Guijun Ma


Guijun Ma   Assistant Professor, PI
InstituteSchool of Physical Science and Technology
Research AreaSolar-light driven photocatalytic and photoelectrochemical water splitting

1998.9-2002.7 Bachelor of Applied Chemistry at Department of Chemical Engineering, Lanzhou University, Gansu Province, P. R. China 

2002.9-2009.2 Ph. D. supervised by Prof. Can Li, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning Province, P. R. China

2009.4-2010.12 Post-doctoral Fellow in Professor Domen and Kubota Laboratory, Department of Chemical System Engineering, School of Engineering, the University of Tokyo, Japan

2010.12-2012.4 Post-doctoral Fellow in Professor Kazuhiro Takanabe’s Laboratory, Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Kingdom of Saudi Arabia 

2012.6-2017.4 Senior Research Scientist in 1) Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem); 2) Professor Domen and Minegishi Laboratory, Department of Chemical System Engineering, School of Engineering, the University of Tokyo, Japan

2017.4-present Assistant Professor, PI, School of Physical Science and Technology, ShanghaiTech University

Research Interests
Solar light-driven photocatalytic and photoelectrochemical water splitting including: 1) Development of new technology for synthesizing oxysulfide and oxynitride photocatalyst materials; 2) Construction of Z-scheme reaction system for overall water splitting. For more information, please visit

Selected Publications

49. “Surface defects engineering of BiFeO3 films for improved photoelectrochemical water oxidation”, Z.Nie, X. Yan, B. Zhang, G. Ma*, N. Yang*, Ceramics International, 10.1016/j.ceramint.2022.08.187

48. “Insight into the Light-Driven Hydrogen Production over Pure and Rh-Doped Rutile in the Presence of Ascorbic Acid: Impact of Interfacial Chemistry on Photocatalysts”, J. Zhang, J. Wang, Y. Tang, K. Liu, B. Zhang, and G. Ma*, ACS Appl. Mater. Interfaces, 2022, 14(30), 34656-34664.

47. Facet Engineering on WO3 Mono-Particle-Layer Electrode for Photoelectrochemical Water Splitting”, W. Lin, B. Zhang, K. Liu, J. Zhang, J. Wang,  G. Ma*, Chemistry - A European Journal, 2022,

46. Facet-Oriented Assembly of Mo:BiVO4 and Rh:SrTiO3 Particles: Integration of p–n Conjugated Photo-electrochemical System in a Particle Applied to Photocatalytic Overall Water Splitting”, B. Zhang, K. Liu, Y. Xiang, J. Wang, W. Lin, M. Guo, G. Ma*, ACS Catal.,  2022, 12, 4, 2415–2425.

45.  Formation of multifaceted nano-groove structure on rutile TiO2 photoanode for efficient electron-hole separation and water splitting”, X. Zhan, Y. Luo, Z. Wang, Y. Xiang, Z. Peng, Y. Han, H. Zhang, R. Chen, Q. Zhou, H. Peng, H. Huang, W. Liu, Ou X., G. Ma*, F. Fan*, F. Yang, C. Li, Z. Liu*J. Energy Chem.202265, 19.

44.  “Doping Rh into TiO2 as a visible-light-responsive photocatalyst: The difference between rutile and anatase”, J. Wang, K. Liu, B. Zhang, Y. Qiu, Y. Xiang, W. Lin, B. Yang, B. Li*, and  G. Ma*, Appl. Phys. Lett., 2021, 119, 213901.

43. “Fabrication of a facet-oriented BiVO4 photoanode by particle engineering for promotion of charge separation efficiency”, B. Zhang, Y. Xiang, M. Guo, J. Wang, K. Liu, W. Lin, and G. Ma*ACS Appl. Energy Mater., 20214, 4259.


42. Design and fabrication of Bi2O3/BiFeO3 heterojunction film with improvedphotoelectrochemical performanceX. Yan, R. Pu, R. Xie, B. Zhang, Y. Shi, W. Liu*, G. Ma*, N. Yang*Appl. Surf. Sci.2021552, 149442.

41. “Flux-assisted preparation of Sm2Ti2S2O5 powder applied to photocatalytic H2 production from waterM. Chao, G. Ma*, Chin. J. Inorg. Chem.202136, 16.

40. “Facet-selective construction of Cu2O/Pt/BiVO5 heterojunction arrays for photocatalytic H2 production from waterJ. Liu, B. Zhang, Y. Xiang, G. Ma*New J. Chem.202045, 517.

39. A one-step synthesis of a Ta3N5 nanorod photoanode from Ta plates and NH4Cl powder for photoelectrochemical water oxidation, Y. Xiang, B. Zhang, J. Liu, S. Chen, T. Hisatomi, K. Domen, G. Ma*Chem. Comm.202056, 11843.

38. Alteration of onset potentials of Rh-doped SrTiO3 electrodes for photoelectrochemical water splitting, M. Guo, G. Ma*J. Cat.2020391, 241.

37. Diatom-inspired multiscale mineralization of patterned protein-polysaccharide complex structures, K. Li, Y. Li, X. Wang, M. Cui, B. An, J. Pu, J. Liu, B. Zhang, G. Ma, C. Zhong*Natl. Sci. Rev.2020, DOI: 10.1093/nsr/nwaa191.

36. Efficient photoelectrochemical hydrogen production over CuInS2 photocathodes modified with amorphous Ni-MoSx operating in a neutral electrolyte, J. Zhao, T. Minegishi, G. Ma, M. Zhong, T. Hisatomi, M. Katayama, T. Yamada, K. Domen*Sustain. Energ. Fuels20204, 1607.

35. Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide, S. Chen, T. Hisatomi, G. Ma, Z. Wang, Z. Pan, T. Takata, K. Domen*Chin. J. Cat.201940, 1668.

34. Visible‐light‐driven photocatalytic Z‐Scheme overall water splitting in La5Ti2AgS5O7‐based Powder‐suspension system, Z. Song, T. Hisatomi, S. Chen, Q. Wang, G. Ma, S. Li, X. Zhu, S. Sun*, K. Domen*ChemSusChem, 201912, 1906.

33. Efficient hydrogen evolution on (CuInS₂)ₓ (ZnS)₁-ₓ solid solution-based photocathodes under simulated sunlight, J. Zhao, T. Minegishi, H. Kaneko, G. Ma, M. Zhong, M. Nakabayashi, M. Katayama, N. Shibata, T. Yamada, K. Domen*Chem. Comm.201955, 470.

32. Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting, S. Chen, G. Ma, Q. Wang, S. Sun, T. Hisatomi, T. Higashi, Z. Wang, M. Nakabayashi, N. Shibata, Z. Pan, T. Hayashi, T. Minegishi, T. Takata, K. Domen*J. Mat. Chem. A20197, 7415.

31. Plate-like Sm2Ti2S2O5 particles prepared by a flux-assisted one-step synthesis for the evolution of O2 from aqueous solutions by both photocatalytic and photoelectrochemical reactionsG. Ma, Y. Kuang, D. H. K. Murthy, T. Hisatomi, J. Seo, S. Chen, H. Matsuzaki, Y. Suzuki, M. Katayama, T. Minegishi, K. Seki, A. Furube, K. Domen*J. Phys. Chem. C, 2018122, 13492.

30. Efficient redox-mediator-free Z-scheme water splitting employing oxysulfide photocatalysts under visible light, S. Sun, T. Hisatomi, Q. Wang, S. Chen, G. Ma, J. Liu, S. Nandy, T. Minegishi, M. Katayama, K. Domen*ACS Cat., 2018, 8, 1690.

29. Enhancement of the H2 evolution activity of La5Ti2Cu(S1−xSex)5O7 photocatalysts by coloading Pt and NiS cocatalysts, S. Nandy, T. Hisatomi, G. Ma, T. Minegishi, M. Katayama, K. Domen*, J. Mat. Chem. A, 20175, 6106.

28. Ultrastable low-bias water spitting photoanodes via photocorrosion inhibition and in-situ catalyst regeneration, Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi, H. Nishiyama, T. Yamada, A. Kudo, K. Domen*Nature Energy, 20172, 16191.

27. Visible light-driven Z-scheme water splitting using oxysulfide H2 evolution photocatalystsG. Ma, S. Chen, Y. Kuang, S. Akiyama, T. Hisatomi, M. Nakabayashi, N. Shibata, M. Katayama, T. Minegishi, K. Domen*J. Phys. Chem. Lett., 2016,7, 3892.

26. Rationalizing long-lived photo-excited carriers in photocatalyst (La5Ti2CuS5O7) in terms of one-dimensional carrier transport, Y. Suzuki, R. Singh, H. Matsuzaki, A. Furube, G. Ma, T. Hisatomi, K. Domen, K. Seki*Chem. Phys., 2016476, 9.

25. Photoanodic and photocathodic behaviours of La5Ti2CuS5O7 electrodes in water splitting reactionG. Ma, Y. Suzuki, R. Singh, A. Iwanaga, Y. Moriya, T. Minegishi, J. Liu, T. Hisatomi, H. Nishiyama, M. Katayama, K. Seki, A. Furube, T. Yamada, K. Domen*Chem. Sci., 20156, 4513.

24. Site-selective photodeposition of Pt on a particulate Sc-La5Ti2CuS5O7 photocathode: evidence for one-dimensional charge transferG. Ma, J. Liu, T. Hisatomi, T. Minegishi, Y. Moriya, M. Iwase, H. Nishiyama, M. Katayama, T. Yamada, K. Domen*Chem. Comm., 201551, 4302.

23. Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by electrodeposition-sulfurization method, J. Zhao, T. Minegishi, L. Zhang, M. Zhong, Gunawan, M. Nakabayashi, G. Ma, T. Hisatomi, M. Katayama, S. Ikeda*, N. Shibata, T. Yamada, K. Domen*Angew. Chem. Int. Ed., 201453, 11808.

22. Improving the photoelectrochemical activity of La5Ti2CuS5O7 for hydrogen evolution by particle transfer and dopingJ. Liu, T. Hisatomi, G. Ma, A. Iwanaga, T. Minegishi, Y. Moriya, M. Katayama, J. Kubota, K. Domen*Energ. Environ. Sci.20147, 2239.

21. Fabrication of photocatalyst panels and the factors determining their activity for water splitting, A. Xiong, G. Ma, K. Maeda, T. Takata, T. Hisatomi, T. Setoyama, J. Kubota, K. Domen*Cat. Sci. Tech., 20144, 325.

20. Photoelectrochemical conversion of toluene to methylcyclohexane as an organic hydride by Cu2ZnSnS4-based photoelectrode assemblies, P. Wang, T. Minegishi, G. Ma, K. Takanabe, Y. Satou, S. Maekawa, Y. Kobori, J. Kubota, K. Domen*J. Am. Chem. Soc.2012134, 2469.

19. Semiconductor monolayer assemblies with oriented crystal facesG. Ma, T. Takata, M. Katayama, F. Zhang, Y. Moriya, K. Takanabe, J. Kubota, K. Domen*CrystEngComm, 201214, 59.

18. A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe2S2] hydrogenase mimic as hydrogen evolution catalyst, F. Wen, X. Wang, L. Huang, G. Ma, J. Yang, C. Li*Chemsuschem,20125, 849.

17. Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplatingG. Ma, T. Minegishi, D. Yokoyama, J. Kubota, K. Domen*Chem. Phys. Lett., 2011501, 619.

16. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation, X. Zong, J. Han, G. Ma, H. Yan, G. Wu and C. Li*J. Phys. Chem. C, 2011115, 12202.

15. Enhanced visible-Light activity of titania via confinement inside carbon nanotubes, W. Chen*, Z. Fan, B. Zhang, G. Ma, K. Takanabe, X. Zhang, Z. Lai*J. Am. Chem. Soc.2011133, 14896.

14. Photocatalytic H2 evolution on MoS2/CdS catalyst under visible light irradiation, X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, C. Li*J. Phys. Chem. C, 2010114, 1963.

13. H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light, D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, J. Kubota, H. Katagiri, K. Domen*Appl. Phys. Express, 2010, 3, 101202.

12. Preparation, characterization and photocatalytic performance of Zn2-xGeO4-x-3yN2y catalysts under visible light irradiationB. Ma, X. Zong, G. Ma, J. Yang, P. Ying, C. Li*, Chem. Bull., 20106, 556.

11. Photocatalytic hydrogen production on CuInS2-ZnS solid solution prepared by solvothermal methodG. Ma, Z. Lei, H. Yan, X. Zong, C. Li*Chin. J. Cat., 2009,30, 73.

10. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst, H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, C. Li*J. Cat., 2009266, 165.

9. Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst, X. Zong, Y. Na, F. Wen, G. Ma, J. Yang, D. Wang, Y. Ma, M. Wang, L. Sun, C. Li*Chem. Comm., 200930, 4536.

8. Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiationG. Ma, H. Yan, J. Shi, X. Zong, Z. Lei, C. Li*J. Cat., 2008260, 134.

7. Photocatalytic splitting of H2S to produce hydrogen by gas-solid phase reactionG. Ma, H. Yan, X. Zong, B. Ma, H. Jiang, F. Wen, C. Li*Chin. J. Cat., 200829, 313.

6. Enhancement of photocatalytic Hevolution on CdS by loading MoS2 as cocatalyst under visible light irradiationX. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li*,J. Am. Chem. Soc.2008130, 7176.

5. Suppressing the CO formation via anion adsorption on Pt/TiO2 for the H2 production from the photocatalytic reforming of methanol, G. Wu, T. Chen, X. Zong, H. Yan, G. Ma, C. Li*J. Cat., 2008253, 225.

4. Kinetics of photogenerated electrons involved in photocatalytic reaction of methanol on Pt/TiO2, T. Chen, G. Wu, Z. Feng, J. Shi, G. Ma, P. Ying, C. Li*Chin. J. Chem. Phys., 200720, 483.

3. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in-situ FTIR and time-resolved IR spectroscopy, T. Chen, Z. Feng, G. Wu, J. Shi, G. Ma, P. Ying, C. Li*J. Phys. Chem. C, 2007111, 8005.

2. Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic Hproduction from water under visible light illuminationZ. Lei, G. Ma, M. Liu, W. You, H. Yan, G. Wu, T. Takata, M. Hara, K. Domen*, C. Li*J. Cat., 2006237, 322.

1. Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2 catalyst under visible light irradiation, M. Liu, W. You, Z. Lei, G. Zhou, J. Yang, G. Wu, G. Ma, G. Luan, T. Takata, M. Hara, K. Domen*, C. Li*Chem. Comm., 200436, 2192.

Book chapter:

G. Ma, T. Hisatomi, K. Domen, “Semiconductors for Photocatalytic and Photoelectrochemical Solar Water Splitting”, in “From Molecules to Materials-Pathway to Artificial Photosynthesis”, Springer Publisher, 2015, pp 1-56, ISBN 978-3-319-13800-8. 

Orcid and ResearcherID: