马贵军

时间:2021-05-25浏览:16486设置

马贵军课题组介绍


课题组长(PI)



马贵军,助理教授、研究员
通讯地址:上海市浦东新区华夏中路393号物质学院5号楼4
电子邮件:magj@shanghaitech.edu.cn 
2002年本科毕业于兰州大学化学化工学院,同年考入中国科学院大连化学物理研究所,师从李灿院士进行光催化降解硫化氢方面的研究,2009年初博士毕业后相继加入日本东京大学Prof. Domen及沙特阿布杜拉国王科技大学(KAUST)Prof. Takanabe课题组从事博士后研究。2012年6月受邀返回东京大学以主任研究员身份加入“人工光合成化学过程技术研究组合(ARPChem)”,进行光催化及光电化学分解水相关研究;2017年4月作为独立PI加入上海科技大学物质科学与技术学院,开展基于无机半导体的太阳能光催化及光电化学分解水反应及机理研究,并为本科生讲授《电化学》与《催化原理基础》两门课程。
 

  Prof. Guijun Ma received his BEng from the Department of Chemical Engineering at Lanzhou University in 2002. He then completed his PhD on photocatalytic splitting of H2S at Dalian Institute of Chemical Physics under the supervision of Prof. Can Li. Later, he worked as a postdoctoral researcher in the groups of Prof. Domen at the University of Tokyo and Prof. Takanabe at KAUST, respectively. In 2009, he was appointed as the Principal Researcher at ARPChem, the University of Tokyo, working on photocatalytic and photoelectrochemical water splitting. Prof. Ma joined the School of Physical Science and Technology of ShanghaiTech University in 2017 as a principal investigator. The main research focus of his group is developing novel inorganic materials for efficient solar water splitting systems. He also lectures undergraduate courses including Electrochemistry and Fundamentals of Catalysis.



研究简介(Research)


   主要从事开发具有可见光响应的氧化物、硫(氧)化物及氮(氧)化物无机半导体材料,通过结晶优化,形貌控制以及表面修饰等实验手段将这一材料应用于太阳能光催化及光电化学分解水制氢反应,在注重催化剂效率的同时,兼顾成本控制及可行性分析,致力于开发出具有一定工业示范前景的光催化材料和反应。主要方向:(1)开发低价、高效的氧硫(氮)化物光催化材料的合成方法;(2)基于Z-体系理念实现光催化及光电化学分解水全反应;(3)无机半导体光催化分解水反应机理探索。

  Our group aims at developing new photocatalytic and photoelectrochemical water splitting materials and devices, which use sunlight as energy input to sustainably produce H2 as clean fuel. To make it commercially viable, we must consider not only elevating its energy conversion efficiency, but also the extending the stability and reducing the costs. Having these factors in mind, we find that transition metal oxides, oxysulfides and (oxy)nitrides with visible responses are candidates with great prospect. At the moment, the state-of-the-art energy conversion efficiency is still rather low, but our preceding research has shown there is plenty of room for improvement with careful control of crystallinity, morphology and surface treatment.

  The main research interests of our group are:

1. Developing cost effective synthetic methods for high performance transition metal oxysulfides and (oxy)nitrides for H2 and O2 evolution reactions.

2. Realizing high overall water splitting efficiency with electrode- or powder-based Z-scheme systems.

3. Gaining mechanistic understanding of photocatalytic and photoelectrochemical processes with advanced characterizations, such as intensity modulated photocurrent spectroscopy and surface photovoltage spectroscopy.



发表文章(Publications)



51. “Stille Type P–C Coupling Polycondensation towards Phosphorus-Crosslinked Polythiophenes with P-Regulated Photocatalytic Hydrogen Evolution”, Z. Zhang,   B. Zhang,   X. Han,   H. Chen,   C. Xue,   M. Peng,   G. Ma*  and  Y. Ren*, Chem. Sci., 2023, Accepted, doi.org/10.1039/D2SC06702A

50. “Synthesis of Narrow-Band-Gap GaN:ZnO Solid Solution for Photocatalytic Overall Water Splitting”, K. Liu, B. Zhang, J. Zhang, W. Lin, J. Wang, Y. Xu, Y. Xiang, T. Hisatomi, K. Domen, and G. Ma*, ACS Catal., 2022, 12(23), 14637–14646.

49. “Surface defects engineering of BiFeO3 films for improved photoelectrochemical water oxidation”, Z.Nie, X. Yan, B. Zhang, G. Ma*, N. Yang*, Ceramics International, 10.1016/j.ceramint.2022.08.187

48. “Insight into the Light-Driven Hydrogen Production over Pure and Rh-Doped Rutile in the Presence of Ascorbic Acid: Impact of Interfacial Chemistry on Photocatalysts”, J. Zhang, J. Wang, Y. Tang, K. Liu, B. Zhang, and G. Ma*, ACS Appl. Mater. Interfaces, 2022, 14(30), 34656-34664.

47. Facet Engineering on WO3 Mono-Particle-Layer Electrode for Photoelectrochemical Water Splitting”, W. Lin, B. Zhang, K. Liu, J. Zhang, J. Wang,  G. Ma*, Chemistry - A European Journal, 2022, doi.org/10.1002/chem.202201169

46. Facet-Oriented Assembly of Mo:BiVO4 and Rh:SrTiO3 Particles: Integration of p–n Conjugated Photo-electrochemical System in a Particle Applied to Photocatalytic Overall Water Splitting”, B. Zhang, K. Liu, Y. Xiang, J. Wang, W. Lin, M. Guo, G. Ma*, ACS Catal.,  2022, 12, 4, 2415–2425.

45.  Formation of multifaceted nano-groove structure on rutile TiO2 photoanode for efficient electron-hole separation and water splitting”, X. Zhan, Y. Luo, Z. Wang, Y. Xiang, Z. Peng, Y. Han, H. Zhang, R. Chen, Q. Zhou, H. Peng, H. Huang, W. Liu, Ou X., G. Ma*, F. Fan*, F. Yang, C. Li, Z. Liu*J. Energy Chem.202265, 19.

44.  “Doping Rh into TiO2 as a visible-light-responsive photocatalyst: The difference between rutile and anatase”, J. Wang, K. Liu, B. Zhang, Y. Qiu, Y. Xiang, W. Lin, B. Yang, B. Li*, and  G. Ma*, Appl. Phys. Lett., 2021, 119, 213901.

43. “Fabrication of a facet-oriented BiVO4 photoanode by particle engineering for promotion of charge separation efficiency”, B. Zhang, Y. Xiang, M. Guo, J. Wang, K. Liu, W. Lin, and G. Ma*ACS Appl. Energy Mater., 2021, 4, 4259.

42. Design and fabrication of Bi2O3/BiFeO3 heterojunction film with improvedphotoelectrochemical performanceX. Yan, R. Pu, R. Xie, B. Zhang, Y. Shi, W. Liu*, G. Ma*, N. Yang*Appl. Surf. Sci., 2021, 552, 149442.

41. “Flux-assisted preparation of Sm2Ti2S2O5 powder applied to photocatalytic H2 production from waterM. Chao, G. Ma*, Chin. J. Inorg. Chem.2021, 36, 16.

40. “Facet-selective construction of Cu2O/Pt/BiVO5 heterojunction arrays for photocatalytic H2 production from waterJ. Liu, B. Zhang, Y. Xiang, G. Ma*, New J. Chem., 2020, 45, 517.

39. A one-step synthesis of a Ta3N5 nanorod photoanode from Ta plates and NH4Cl powder for photoelectrochemical water oxidation, Y. Xiang, B. Zhang, J. Liu, S. Chen, T. Hisatomi, K. Domen, G. Ma*Chem. Comm.202056, 11843.

38. Alteration of onset potentials of Rh-doped SrTiO3 electrodes for photoelectrochemical water splitting, M. Guo, G. Ma*, J. Cat., 2020, 391, 241.

37. Diatom-inspired multiscale mineralization of patterned protein-polysaccharide complex structures, K. Li, Y. Li, X. Wang, M. Cui, B. An, J. Pu, J. Liu, B. Zhang, G. Ma, C. Zhong*, Natl. Sci. Rev., 2020, DOI: 10.1093/nsr/nwaa191.

36. Efficient photoelectrochemical hydrogen production over CuInS2 photocathodes modified with amorphous Ni-MoSx operating in a neutral electrolyte, J. Zhao, T. Minegishi, G. Ma, M. Zhong, T. Hisatomi, M. Katayama, T. Yamada, K. Domen*, Sustain. Energ. Fuels, 2020, 4, 1607.

35. Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide, S. Chen, T. Hisatomi, G. Ma, Z. Wang, Z. Pan, T. Takata, K. Domen*, Chin. J. Cat., 2019, 40, 1668.

34. Visible‐light‐driven photocatalytic Z‐Scheme overall water splitting in La5Ti2AgS5O7‐based Powder‐suspension system, Z. Song, T. Hisatomi, S. Chen, Q. Wang, G. Ma, S. Li, X. Zhu, S. Sun*, K. Domen*, ChemSusChem, 2019, 12, 1906.

33. Efficient hydrogen evolution on (CuInS₂)ₓ (ZnS)₁-ₓ solid solution-based photocathodes under simulated sunlight, J. Zhao, T. Minegishi, H. Kaneko, G. Ma, M. Zhong, M. Nakabayashi, M. Katayama, N. Shibata, T. Yamada, K. Domen*, Chem. Comm., 2019, 55, 470.

32. Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting, S. Chen, G. Ma, Q. Wang, S. Sun, T. Hisatomi, T. Higashi, Z. Wang, M. Nakabayashi, N. Shibata, Z. Pan, T. Hayashi, T. Minegishi, T. Takata, K. Domen*, J. Mat. Chem. A, 2019, 7, 7415.

31. Plate-like Sm2Ti2S2O5 particles prepared by a flux-assisted one-step synthesis for the evolution of O2 from aqueous solutions by both photocatalytic and photoelectrochemical reactions, G. Ma, Y. Kuang, D. H. K. Murthy, T. Hisatomi, J. Seo, S. Chen, H. Matsuzaki, Y. Suzuki, M. Katayama, T. Minegishi, K. Seki, A. Furube, K. Domen*, J. Phys. Chem. C, 2018, 122, 13492.

30. Efficient redox-mediator-free Z-scheme water splitting employing oxysulfide photocatalysts under visible light, S. Sun, T. Hisatomi, Q. Wang, S. Chen, G. Ma, J. Liu, S. Nandy, T. Minegishi, M. Katayama, K. Domen*, ACS Cat., 2018, 8, 1690.

29. Enhancement of the H2 evolution activity of La5Ti2Cu(S1−xSex)5O7 photocatalysts by coloading Pt and NiS cocatalysts, S. Nandy, T. Hisatomi, G. Ma, T. Minegishi, M. Katayama, K. Domen*, J. Mat. Chem. A, 2017, 5, 6106.

28. Ultrastable low-bias water spitting photoanodes via photocorrosion inhibition and in-situ catalyst regeneration, Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi, H. Nishiyama, T. Yamada, A. Kudo, K. Domen*, Nature Energy, 2017, 2, 16191.

27. Visible light-driven Z-scheme water splitting using oxysulfide H2 evolution photocatalysts, G. Ma, S. Chen, Y. Kuang, S. Akiyama, T. Hisatomi, M. Nakabayashi, N. Shibata, M. Katayama, T. Minegishi, K. Domen*, J. Phys. Chem. Lett., 2016,7, 3892.

26. Rationalizing long-lived photo-excited carriers in photocatalyst (La5Ti2CuS5O7) in terms of one-dimensional carrier transport, Y. Suzuki, R. Singh, H. Matsuzaki, A. Furube, G. Ma, T. Hisatomi, K. Domen, K. Seki*, Chem. Phys., 2016, 476, 9.

25. Photoanodic and photocathodic behaviours of La5Ti2CuS5O7 electrodes in water splitting reaction, G. Ma, Y. Suzuki, R. Singh, A. Iwanaga, Y. Moriya, T. Minegishi, J. Liu, T. Hisatomi, H. Nishiyama, M. Katayama, K. Seki, A. Furube, T. Yamada, K. Domen*, Chem. Sci., 2015, 6, 4513.

24. Site-selective photodeposition of Pt on a particulate Sc-La5Ti2CuS5O7 photocathode: evidence for one-dimensional charge transferG. Ma, J. Liu, T. Hisatomi, T. Minegishi, Y. Moriya, M. Iwase, H. Nishiyama, M. Katayama, T. Yamada, K. Domen*, Chem. Comm., 2015, 51, 4302.

23. Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by electrodeposition-sulfurization method, J. Zhao, T. Minegishi, L. Zhang, M. Zhong, Gunawan, M. Nakabayashi, G. Ma, T. Hisatomi, M. Katayama, S. Ikeda*, N. Shibata, T. Yamada, K. Domen*, Angew. Chem. Int. Ed., 2014, 53, 11808.

22. Improving the photoelectrochemical activity of La5Ti2CuS5O7 for hydrogen evolution by particle transfer and doping, J. Liu, T. Hisatomi, G. Ma, A. Iwanaga, T. Minegishi, Y. Moriya, M. Katayama, J. Kubota, K. Domen*Energ. Environ. Sci.2014, 7, 2239.

21. Fabrication of photocatalyst panels and the factors determining their activity for water splitting, A. Xiong, G. Ma, K. Maeda, T. Takata, T. Hisatomi, T. Setoyama, J. Kubota, K. Domen*, Cat. Sci. Tech., 2014, 4, 325.

20. Photoelectrochemical conversion of toluene to methylcyclohexane as an organic hydride by Cu2ZnSnS4-based photoelectrode assemblies, P. Wang, T. Minegishi, G. Ma, K. Takanabe, Y. Satou, S. Maekawa, Y. Kobori, J. Kubota, K. Domen*J. Am. Chem. Soc.2012, 134, 2469.

19. Semiconductor monolayer assemblies with oriented crystal faces, G. Ma, T. Takata, M. Katayama, F. Zhang, Y. Moriya, K. Takanabe, J. Kubota, K. Domen*, CrystEngComm, 2012, 14, 59.

18. A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe2S2] hydrogenase mimic as hydrogen evolution catalyst, F. Wen, X. Wang, L. Huang, G. Ma, J. Yang, C. Li*, Chemsuschem,2012, 5, 849.

17. Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating, G. Ma, T. Minegishi, D. Yokoyama, J. Kubota, K. Domen*, Chem. Phys. Lett., 2011, 501, 619.

16. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation, X. Zong, J. Han, G. Ma, H. Yan, G. Wu and C. Li*, J. Phys. Chem. C, 2011, 115, 12202.

15. Enhanced visible-Light activity of titania via confinement inside carbon nanotubes, W. Chen*, Z. Fan, B. Zhang, G. Ma, K. Takanabe, X. Zhang, Z. Lai*, J. Am. Chem. Soc.2011, 133, 14896.

14. Photocatalytic H2 evolution on MoS2/CdS catalyst under visible light irradiation, X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, C. Li*, J. Phys. Chem. C, 2010, 114, 1963.

13. H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light, D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, J. Kubota, H. Katagiri, K. Domen*, Appl. Phys. Express, 2010, 3, 101202.

12. Preparation, characterization and photocatalytic performance of Zn2-xGeO4-x-3yN2y catalysts under visible light irradiationB. Ma, X. Zong, G. Ma, J. Yang, P. Ying, C. Li*, Chem. Bull., 2010, 6, 556.

11. Photocatalytic hydrogen production on CuInS2-ZnS solid solution prepared by solvothermal method, G. Ma, Z. Lei, H. Yan, X. Zong, C. Li*, Chin. J. Cat., 2009,30, 73.

10. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst, H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, C. Li*, J. Cat., 2009, 266, 165.

9. Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst, X. Zong, Y. Na, F. Wen, G. Ma, J. Yang, D. Wang, Y. Ma, M. Wang, L. Sun, C. Li*, Chem. Comm., 2009, 30, 4536.

8. Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation, G. Ma, H. Yan, J. Shi, X. Zong, Z. Lei, C. Li*, J. Cat., 2008, 260, 134.

7. Photocatalytic splitting of H2S to produce hydrogen by gas-solid phase reaction, G. Ma, H. Yan, X. Zong, B. Ma, H. Jiang, F. Wen, C. Li*, Chin. J. Cat., 2008, 29, 313.

6. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li*,J. Am. Chem. Soc.2008, 130, 7176.

5. Suppressing the CO formation via anion adsorption on Pt/TiO2 for the H2 production from the photocatalytic reforming of methanol, G. Wu, T. Chen, X. Zong, H. Yan, G. Ma, C. Li*, J. Cat., 2008, 253, 225.

4. Kinetics of photogenerated electrons involved in photocatalytic reaction of methanol on Pt/TiO2, T. Chen, G. Wu, Z. Feng, J. Shi, G. Ma, P. Ying, C. Li*, Chin. J. Chem. Phys., 2007, 20, 483.

3. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in-situ FTIR and time-resolved IR spectroscopy, T. Chen, Z. Feng, G. Wu, J. Shi, G. Ma, P. Ying, C. Li*, J. Phys. Chem. C, 2007, 111, 8005.

2. Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination, Z. Lei, G. Ma, M. Liu, W. You, H. Yan, G. Wu, T. Takata, M. Hara, K. Domen*, C. Li*, J. Cat., 2006, 237, 322.

1. Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2 catalyst under visible light irradiation, M. Liu, W. You, Z. Lei, G. Zhou, J. Yang, G. Wu, G. Ma, G. Luan, T. Takata, M. Hara, K. Domen*, C. Li*, Chem. Comm., 2004, 36, 2192.

Book chapter:

G. Ma, T. Hisatomi, K. Domen, “Semiconductors for Photocatalytic and Photoelectrochemical Solar Water Splitting”, in “From Molecules to Materials-Pathway to Artificial Photosynthesis”, Springer Publisher, 2015, pp 1-56, ISBN 978-3-319-13800-8. 


Orcid and ResearcherID:

https://www.scopus.com/authid/detail.uri?authorId=24280560300

http://orcid.org/0000-0001-7943-9750

https://publons.com/researcher/1677607/guijun-ma/  



组内活动(Activities)



202010月合照

16届全国太阳能光化学与光催化学术会议

欢送郑仓晟工程师


组内动态(News)


本组长期招聘工程师、博后或助理研究员,

应聘者请通过电子邮件联系马贵军老师magj@shanghaitech.edu.cn欢迎感兴趣的学生学者们加盟本课题组!


本组成员(Members)


张继方 / 助理研究员 (2021)

PhD: 2015-2019, 巴斯大学, 化学工程

Email:zhangjf3@shanghaitech.edu.cn


张博杨 / 博士研究生 (2018)

BS: 2014-2018, 太原理工大学, 应用化学

Email:zhangby1@shanghaitech.edu.cn

Tel:021-20685277

铠玮 / 博士研究生 (2019)

BS: 2015-2019, 福建师范大学, 应用化学

Email:liukw1@shanghaitech.edu.cn

Tel:021-20685277

许垚 / 博士研究生 (2020)

BS: 2016-2020, 上海科技大学, 材料科学与工程

Email:xuyao@shanghaitech.edu.cn

Tel:021-20685277

张家铭 / 博士研究生 (2020)

BS: 2016-2020, 黑龙江大学高分子材料与工程

Email:zhangjim3@shanghaitech.edu.cn

Tel:021-20685277

 史珂 / 硕士研究生(2020)

BS: 2016-2020, 上海师范大学化学工程与工艺

Email:shike@shanghaitech.edu.cn

Tel:021-20685277


汤业成 / 硕士研究生 (2021)

BS: 2017-2021, 上海科技大学, 化学

Email:tangych@shanghaitech.edu.cn

Tel:021-20685277

张自豪 / 硕士研究生 (2021)

BS: 2017-2021, 中国矿业大学材料学

Email:zhangzh5@shanghaitech.edu.cn

Tel:021-20685277

王海峰 / 硕士研究生 (2022)

BS: 2018-2022, 东北师范大学, 化学

Email:wanghf2022@shanghaitech.edu.cn

Tel:021-20685277

刘梦 / 硕士研究生 (2022)

BS: 2018-2022, 青岛科技大学, 新能源材料与器件

Email:liumeng2022@shanghaitech.edu.cn

Tel:021-20685277

贾林虎 / 硕士研究生 (2022)

BS: 2015-2019, 西南石油大学材料科学与工程

Email:jialh2022@shanghaitech.edu.cn

Tel:021-20685277



曾在组内的成员(Alumni)





茅学曼 / 硕士研究生 (2021)

林文瑞 / 硕士研究生 (2019)

王佳明 / 硕士研究生 (2018)

仇亚茹 / 博士后 (2020)

向遥 / 硕士研究生 (2018)

刘金涛 / 硕士研究生 (2018)

郑仓晟 / Lab Engineer(2018)     

周伟成 / 硕士研究生 (2018)

杨懿 / 上科大本科生(2019)

郭美 / 硕士研究生(2017)

晁明坤 / 硕士研究生(2017)









返回原图
/