Chao Xu


Xu Group

   Principal Investigator  Research  Publication  Group Member

Chao Xu, Tenure-Track Assistant Professor, Principal Investigator

Contact address: School of Physical Science and Technology, ShanghaiTech University 


For our latest updates, please visit:


2021.06-now          ShanghaiTech University, Assistant Professor, Principal Investigator

2018.02-2021.05    University of Cambridge, Postdoc research associate

2017.07-2018.02    Uppsala University, Postdoc

2012.11-2017.07    Uppsala University, PhD

2010.08-2012.07    Uppsala University, MSc

2006.08-2010.06    Nanjing University of Science and Technology, BE

We develop key materials for the next generation rechargeable lithium-ion and sodium-ion batteries and study the underlying fundamental mechanisms using a wide range of advanced characterisation techniques, particularly in-situ and operando methods to monitor reactions at various length scales in real time. We aim to make our contribution to the development of a more sustainable and carbon-neutral society!

We are a dynamic and vibrant group, and we are always looking for applicants (undergraduate/graduate students, postdocs and researchers) with a strong background in chemistry, physics, material science and characterisation method development. Please feel free to email Assist. Prof. Chao Xu ( your initiative application including a short CV and motivation letter (as PDF), and please do not hesitate to email if you have any further questions.


Prior to ShanghaiTech

Xu, C.; Märker, K.;   Lee, J.; Mahadevegowda, A.; Reeves, P. J.; Day, S. J.; Groh, M. F.; Emge, S.   P.; Ducati, C.; Layla Mehdi, B.; Tang, C. C.; Grey, C. P. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 2021, 20, 84-92. DOI:10.1038/s41563-020-0767-8(Highlighted by University of Cambridge,, EurikAlert!, ScienMag, Science Daily,, MaterialsToday)

Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Phase Behavior during Electrochemical Cycling of Ni-Rich Cathode Materials for Li-Ion Batteries. Adv. Energy Mater. 2021, 11, 2003404. DOI:10.1002/aenm.202003404

Xu, C.;† Hernández, G.; Abbrent, S.; Kobera, L.; Konefal, R.; Brus, J.; Edström, K.; Brandell, D.; Mindemark, J. Unraveling and Mitigating the Storage Instability of Fluoroethylene Carbonate-Containing LiPFElectrolytes To Stabilize Lithium Metal Anodes for High-Temperature Rechargeable Batteries. ACS Appl. Energy Mater. 2019, 2, 4925-4935. DOI:10.1021/acsaem.9b00607 (equal contribution)

Xu, C.; Jeschull, F.; Brant, W. R.; Brandell, D.; Edström, K.; Gustafsson, T. The Role of LiTDI Additive in LiNi1/3Mn1/3Co1/3O2/Graphite Lithium-Ion Batteries at Elevated Temperatures. J. Electrochem. Soc. 2018165, A40-A46. DOI:10.1149/2.0231802jes

Xu, C.; Renault, S.; Ebadi, M.; Wang, Z.; Björklund, E.; Guyomard, D.; Brandell, D.; Edström, K.; Gustafsson, T. LiTDI: A Highly Efficient Additive for Electrolyte Stabilization in Lithium-Ion Batteries. Chem. Mater. 201729, 2254-2263. DOI:10.1021/acs.chemmater.6b05247

Xu, C.; Lindgren, F.; Philippe, B.; Gorgoi, M.; Björefors, F.; Edström, K.;   Gustafsson, T. Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Chem. Mater. 201527, 2591-2599. DOI:10.1021/acs.chemmater.5b00339(Highly cited paper, Essential Science IndicatorsSM)

Xu, C.; Sun, B.; Gustafsson, T.; Edström, K.; Brandell, D.; Hahlin, M. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J. Mater. Chem. A 2014, 2, 7256-7264. DOI:10.1039/c4ta00214h

Ruff, Z.; Xu, C.; Grey, C. Transition Metal Dissolution and Degradation in NMC811-Graphite Electrochemical Cells. J. Electrochem. Soc. 2021. DOI:10.1149/1945-7111/ac0359

Lee, J.; Amari, H.; Bahri, M.; Shen, Z.; Xu, C.; Ruff, Z.; Ersen, O.; Grey, C.; Aguadero, A.; Browning, N.; Mehdi, B. L. The Complex Role of Aluminium Contamination in Nickel-rich Layered Oxide Cathodes for Lithium-ion Batteries. Batteries & Supercaps. 2021, DOI:10.1002/batt.202100110

Mukherjee, P.; Paddison, J. A. M.; Xu, C.; Ruff, Z.; Wildes, A. R.; Keen, D. A.; Smith, R. I.; Grey, C. P.; Dutton, S. E. Sample Dependence of Magnetism in the Next-Generation Cathode Material LiNi0.8Mn0.1Co0.1O2Inorg. Chem. 2021, 60, 263-271. DOI:10.1021/acs.inorgchem.0c02899

Dose, W. M.; Xu, C.; Grey, C. P.; De Volder, M. F. L. Effect of Anode Slippage on Cathode Cutoff Potential and Degradation Mechanisms in Ni-Rich Li-Ion Batteries. Cell Rep. Phys. Sci. 2020, 1, 100253. DOI:10.1016/j.xcrp.2020.100253

Märker, K.; Xu, C.; Grey, C. P. Operando NMR of NMC811/Graphite Lithium-Ion Batteries: Structure, Dynamics, and Lithium Metal Deposition. J. Am. Chem.Soc. 2020, 142, 17447-17456. DOI:10.1021/jacs.0c06727

Lu, J.; Dey, S.; Temprano, I.; Jin, Y.; Xu, C.; Shao, Y.; Grey, C. P. Co3O4-Catalyzed LiOH Chemistry in Li-O2 Batteries. ACS Energy Letters 20205, 3681-3691. DOI:10.1021/acsenergylett.0c01940

Massel, F.; Hikima, K.; Rensmo, H.; Suzuki, K.; Hirayama, M.; Xu, C.; Younesi, R.; Liu, Y.-S.; Guo, J.; Kanno, R.; Hahlin, M.; Duda, L.-C. Excess Lithium in Transition Metal Layers of Epitaxially Grown Thin Film Cathodes of Li2MnO3 Leads to Rapid Loss of Covalency during First Battery Cycle.  J. Phys. Chem. C2019, 123, 28519-28526. DOI:10.1021/acs.jpcc.9b06246

Märker, K.; Reeves, P. J.; Xu, C.; Griffith, K. J.; Grey, C. P. Evolution of Structure and Lithium Dynamics in LiNi0.8Mn0.1Co0.1O2   (NMC811) Cathodes during Electrochemical Cycling. Chem. Mater. 201931, 2545-2554. DOI:10.1021/acs.chemmater.9b00140

Lindgren, F.; Rehnlund, D.; Pan, R.; Pettersson, J.; Younesi, R.; Xu, C.; Gustafsson, T.; Edström, K.; Nyholm, L. On the Capacity Losses Seen for Optimized Nano-Si Composite Electrodes in Li-Metal Half-Cells. Adv. Energy Mater. 20199, 1901608. DOI:10.1002/aenm.201901608

Wang, Z.; Li, M.; Ruan, C.; Liu, C.; Zhang, C.; Xu, C.; Edström, K.; Strømme, M.; Nyholm, L. Conducting Polymer Paper-Derived Mesoporous 3D N-doped Carbon Current Collectors for Na and Li Metal Anodes: A Combined Experimental and Theoretical Study J. Phys. Chem. C 2018, 122, 23352-23363. DOI:10.1021/acs.jpcc.8b07481

Oltean, G.; Plylahan, N.; Ihrfors, C.; Wei, W.; Xu, C.; Edström, K.; Nyholm, L.; Johansson, P.; Gustafsson, T. Towards Li-Ion Batteries Operating at 80 °C: Ionic Liquid versus Conventional Liquid Electrolytes. Batteries 2018, 4, 2. DOI:10.3390/batteries4010002

Srivastav, S.; Xu, C.; Edström, K.; Gustafsson, T.; Brandell, D. Modelling the morphological background to capacity fade in Si-based lithium-ion batteries. Electrochim. Acta 2017258, 755-763. DOI:10.1016/j.electacta.2017.11.124

Wang, Z.; Pan, R.; Xu, C.; Ruan, C.; Edström, K.; Strømme, M.; Nyholm, L. Conducting polymer paper-derived separators for lithium metal batteries. Energy Storage Mater. 2018, 13, 283-292. DOI:10.1016/j.ensm.2018.02.006

Lindgren, F.; Xu, C.; Maibach, J.; Andersson, A. M.; Marcinek, M.; Niedzicki, L.; Gustafsson, T.; Björefors, F.; Edström, K. A hard X-ray photoelectron spectroscopy study on the solid electrolyte interphase of a lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide based electrolyte for Si-electrodes. J. Power Sources 2016, 301, 105-112. DOI:10.1016/j.jpowsour.2015.09.112

Lindgren, F.; Xu, C.; Niedzicki, L.; Marcinek, M.; Gustafsson, T.; Björefors, F.; Edström, K.; Younesi, R. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. ACS Appl. Mater. Interfaces 20168, 15758-15766. DOI:10.1021/acsami.6b02650

Maibach, J.; Xu, C.; Eriksson, S. K.; Åhlund, J.; Gustafsson, T.; Siegbahn, H.; Rensmo, H.; Edström, K.; Hahlin, M. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion   battery system. Rev. Sci. Instrum. 2015, 86, 044101. DOI:10.1063/1.4916209

Sun, B.; Xu, C.; Mindemark, J.; Gustafsson, T.; Edström, K.; Brandell, D. At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 20153, 13994-14000. DOI:10.1039/C5TA02485D

Wang, Z.; Xu, C.; Tammela, P.; Huo, J.; Strømme, M.; Edström, K.;   Gustafsson, T.; Nyholm, L. Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. J. Mater. Chem. A20153, 14109-14115. DOI:10.1039/C5TA02136G

Wang, Z.; Xu, C.; Tammela, P.; Zhang, P.; Edström, K.; Gustafsson, T.; Strømme, M.; Nyholm, L. Conducting Polymer Paper-Based Cathodes for High-Areal-Capacity Lithium-Organic Batteries. Energy Technology 20153, 563-569. DOI:10.1002/ente.201402224