Tsu-Chien Weng

Date:2021-09-23Views:890设置

翁祖谦课题组介绍


课题组长 

Group Leader



翁祖谦,正教授
通讯地址 Office Address:学院5号楼403-F

电子邮件 Email:wengzq@shanghaitech.edu.cn


  

2019.07-迄今 上海科技大学教授

2015.04-2019.06 北京高科学研究中心研究

2010.07-2015.04 Staff Scientist, SSRL, SLAC National Accelerator Laboratory

2006.04-2010.07 Scientist, Exp. Division, European Synchrotron Radiation Facility

2005.01-2006.03 Senior Res. Associate, BioCAT, CSRRI, Illinois Institute of Technology

2004.02-2004.12 Post-doc, Biophysics Res. Division, Univ. of Michigan at Ann Arbor

1997.09-2003.12 PhD, Chemistry, Univ. of Michigan at Ann Arbor

1993.09-1995.07 台湾大学化学系

1989.09-1993.06 台湾大学化学系学士




研究介绍 

Research Interest



研究主要是探讨表界面间电移和能量传递的超快程,包括光致反、光催化、化学反等,研究其反途径与机理,以及生物酶蛋白的金属氧化还原中心的功能结构发展X射线谱学方法学(XASXESIXS)与实验探测技术,研制高能量分辨X射线光谱仪(图 1,2,3)。在同步施和X线自由子激光装置X线,在原位反条件下,时间分辨技,配合第一原理算,表征反应位点结构行能源材料的机理研究。

目前在研项目主要包括三个方面:(1)利用pump-probe探测技术研究光催化反应的电荷转移动力学(图 4,5,6);(2)(光)电催化反应催化剂的制备、表征和机理研究(图 7);(3)用于X射线光谱仪的元件和材料的制备研究(图 8,9,10)。

  

图 1:研制的高能量分辨X射线光谱仪

  

图 2:依托高能量分辨能谱仪发展的先进X射线谱学方法学

  

图 3:多维超快X射线谱学



图 4:利用超快光谱技术研究量子点表面缺陷对电子转移过程影响。(a)泵浦探测技术原理示意图;(b)(c)CdSe QDs的瞬态吸收光谱。



图 5:(a)(b)在酸处理前后,测试ZnO中的 Zn L-edge和 O K-edge的XAS,证明了ZnO经酸处理后氧空位增多;(c)通用同步加速器超快泵浦探测束示意图。




图 6:通过调控碳源和掺杂前驱体,合成具有UV- Visible波段的荧光发射的碳点。基于瞬态吸收光谱(TA),研究碳点的碳核态、表面缺陷态和分子态,在光催化体系下的电荷转移动力学过程。


 

图 7:采用电化学沉积的手段制备了高效能的电解水催化剂,利用XPS,XAS等手段证明了Fe原子对Ni原子的价态的调控,通过FTIR以及Raman光谱证明了羧酸自由基的存在,采用动力学同位素实验证明在析氧反应中发生的质子耦合电子转移过程。




图 8:利用激光直写光刻和反应离子束刻蚀实现可见光波段的金刚石光栅制备,实现核心刻蚀工艺的突破。目前致力于金刚石离子束注入光刻的实现,实现高效率高准确度的金刚石光刻工艺。



图 9:将硅/锗/石英晶片压弯并粘接在玻璃基底上,保证曲率半径和表面形貌满足使用条件。使用胶水粘合工艺,完成半径1000mm弯晶单色器的制备,且表面RMS、聚焦性能、曲率半径等几何面型参数与成品弯晶接近。


图 10:利用脉冲激光沉积技术(Pulsed Laser Deposition)在衬底上沉积BiFeO3 (BFO)薄膜,用XRD和RSM(Reciprocal Space Mapping),AFM技术来判断薄膜生长的质量,并采用C-AFM(Conductive-AFM),PFM(Piezoresponse Force Microscopy)等方法来进行电学测试,同时结合课题组的XAS技术,研究BFO薄膜的晶体结构,铁电性以及反铁磁性三者之间的耦合关系和其他独特性质。左图为PLD技术示意图,右图为经过氢氟酸酸洗后得到的具有原子台阶的SrTiO3衬底表面的AFM测试结果。



45.   “Resonant X-ray emission spectroscopy from broadband stochastic pulses at an X-ray free electron laser”. Communications Chemistry, 2021. 4(1).

44.  “The five-analyzer point-to-point scanning crystal spectrometer at ESRF ID26”. Journal of Synchrotron Radiation, 2021. 28: p. 362-371.

43.  “Effect of 3d/4p Mixing on 1s2p Resonant Inelastic X-ray Scattering: Electronic Structure of Oxo-Bridged Iron Dimers”. Journal of the American Chemical Society, 2021. 143(12): p. 4569-4584.

42.  “Probing the Electronic Band Gap of Solid Hydrogen by Inelastic X-Ray Scattering up to 90 GPa”. Physical Review Letters, 2021. 126(3).

41.  “Efficient approaches to solutions of partition function for condensed matters”. Journal of Physics-Condensed Matter, 2021. 33(11).

40.  “Sulfur K beta X-ray emission spectroscopy: comparison with sulfur K-edge X-ray absorption spectroscopy for speciation of organosulfur compounds”. Physical Chemistry Chemical Physics, 2021. 23(8): p. 4500-4508.

39.  “The Limitations of 5f Delocalization and Dispersion”. Applied Sciences-Basel, 2021. 11(9).

38.  “Underlying simplicity of 5f unoccupied electronic structure”. Journal of Vacuum Science & Technology A, 2021. 39(4).

37.  “Which phase of Ta2O5 being of the largest dielectric constant”. Journal of the American Ceramic Society, 2021.

36.    “Femtosecond electronic structure response to high intensity XFEL pulses probed by iron X-ray emission spectroscopy”. Scientific Reports, 2020. 10(1).

35.    “A versatile Johansson-type tender x-ray emission spectrometer”. Review of Scientific Instruments, 2020. 91(3).

34.    “Towards the Quantification of 5f Delocalization”. Applied Sciences-Basel, 2020. 10(8).

33.    “EXAFS as a probe of actinide oxide formation in the tender X-ray regime”. Surface Science, 2020. 698.

32.    “Towards the Quantification of 5f Delocalization (vol 10, 2918, 2020)”. Applied Sciences-Basel, 2020. 10(12).

31.    “Ultrathin transmission-type bent crystals for XFEL spectral diagnostic”. in International Conference on Optoelectronic and Microelectronic Technology and Application. 2020. Nanjing, PEOPLES R CHINA.

30.    “A soft X-ray emission flat-field grating spectrometer for time-resolved spectroscopy”. in International Conference on Optoelectronic and Microelectronic Technology and Application. 2020. Nanjing, PEOPLES R CHINA.

29. “NpSe2: a binary chalcogenide containing modulated selenide chains and ambiguous-valent metal”, Angew. Chem. Int. Ed., 201958, 16130–16133.

28.   “Soft X-ray spectroscopy with Transition-Edge Sensors at Stanford Synchrotron Radiation Lightsource beamline 10-1”, Rev. Sci. Instrum.201990, 113101.

27.   “Comparison of Two Efficient Methods for Calculating Partition Functions”, Entropy201921, 1050.

26.   “Charge-Transfer-induced Interfacial Exchange Coupling at the Co/BiFeO3 Interface”, Phys. Rev. Appl.201912, 044010.

25.   “Diagram, Valence-to-Core, and Hypersatellite K beta X-ray Transitions in Metallic Chromium”, X-ray Spectrom.201948, 351–359.

24.   “Revisiting the Phase Transition of Magnetite under Pressure”, J. Phys. Chem. C2019123, 21114–21119.

23.   “What Retards the Response of Graphene based Gaseous Sensor”, Sens. Actuators A Phys.2019295, 188–192.

22.   “A New Model to Predict Optimum Conditions for Growth of 2D Materials on a Substrate”, Nanomaterials20199, 978.

21.   “Nature of Cobalt Species during the in situ Sulfurization of Co(Ni)Mo/Al2O3 Hydrodesulfurization Catalysts”, J. Synchrotron Rad.201926, 811–818.

20.   “A High-Throughput Energy-Dispersive Tender X-ray Spectrometer for Shot-to-Shot Sulfur Measurements”, J. Synchrotron Rad.201926, 629–634.

19.   “Separate measurement of the 5f5/2 and 5f7/2 unoccupied density of states of UO2”, J. Electron Spectrosc. Relat. Phenom., 2019232, 100–104.

18.   “Electronic Structure of Naturally Occurring Aromatic Carbon”, EnergyFuels., 201933, 2099–2105.

17.   “Electronic structure changes upon lithium intercalation into graphite – Insights from ex situ and operando X-ray Raman spectroscopy”, Carbon2019143, 371–377.

16.   “Operando Observation of Chemical Transformations of Iridium Oxide During Photoelectrochemical Water Oxidation”, ACS Appl. Energy Mat., 20192, 1371–1379.

15.   “Initial metal-metal bond breakage detected by fs X-ray scattering in the photolysis of Ru3(CO)12 in cyclohexane at 400 nm”, Photochem. Photobiol. Sci.201918, 319–327.

14.   “Carbon Core Electron Spectra of Polycyclic Aromatic Hydrocarbons”, J. Phys. Chem. A, 2018, 122, 5730–5734.

13.   “Highly Active Surface Structure in Nanosized Spinel Cobalt-based Oxides for Electrocatalytic Water Splitting”, J. Phys. Chem. C2018122, 14447–14458.

12.   “Surface- and Pressure-induced Bulk Kondo Breakdown in SmB6”, Phys. Rev. B201897, 235153.

11.   “Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide”, Phys. Rev. B201898, 045104.

10.   “Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials”, Nano Lett., 201818, 3241–3249.

9.      “L-Edge Spectroscopy of Dilute, Radiation-Sensitive Systems using a Transition-Edge-Sensor Array”, J. Chem. Phys., 201821, 214201.

8.      “Soft X-Ray Second Harmonic Generation as an Interfacial Probe”, Phys. Rev. Lett.2018120, 023901.

7.      “Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries”, Chem. Rev., 2017117, 13123–13186.

6.      “Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2’-bipyridine)2(CN)2]”, Struct. Dynamics20174, 044030.

5.      “An Oxygen-Insensitive Hydrogen Evolution Catalyst Coated by a Molybdenum-based Layer for Overall Water Splitting”, Angew. Chem. Int. Ed.201756, 5780–5784.

4.      “Operando Investigation on Au-MnOx thin films with improved activity for the oxygen evolution reaction”, Electrochimica Acta2017230, 22–28.

3.      “Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)”, Sol. Energy Mater. Sol. Cells2017160, 390–397.

2.      “Charge and spin-state characterization of cobalt bis(o-dioxolene) valence tautomers using Co Kβ x-ray emission and L-edge x-ray absorption spectroscopies”, Inorg. Chem., 201756, 737–747.

1.      “Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substation”, Chem. Sci.20178, 515–523.

元春泽

副研究员

研究方向:光电催化反应动力学研究;电化学能源材料和金属离子电池的研究

邮箱 Email:yuanchz@shanghaitech.edu.cn

李林

副研究员

研究方向:染料、催化剂和纳米材料的合成表征与应用;利用X射线光谱研究人工光合作用催化剂工作机理和分子激发态动力学。

邮箱 Email:lilin1@shanghaitech.edu.cn

豆宏斌

2019级 研究生

研究方向:量子点光催化析氢的超快过程探究

邮箱 Email:douhb@shanghaitech.edu.cn

杨智乞

2019级 研究生

研究方向:用于硬X射线实时监测的金刚石光栅的制备研究

邮箱 Email:yangzhiq@shanghaitech.edu.cn

张继豪

2020级 研究生

研究方向:利用泵浦探测手段研究基于碳量子点的光催化反应的电荷转移动力学。

邮箱 Email:zhangjh5@shanghaitech.edu.cn

曾暄琦

2020级 研究生

研究方向:x射线荧光光谱仪中弯晶的键合与测试。

邮箱 Email:zengxq@shanghaitech.edu.cn

李郭琦

2020级 研究生

研究方向:电催化析氧反应催化剂的研究

邮箱 Email:ligq1@shanghaitech.edu.cn

张大威

2020级 研究生

研究方向:光谱仪核心元件弯晶单色器的低温制备工艺流程设计以及X射线光谱的大数据算法分析

邮箱 Email:zhangdw@shanghaitech.edu.cn

孙兴瑞

2020级 研究生

研究方向:BiFeO3 (BFO)薄膜的制备、表征及性能研究

邮箱 Email:sunxr@shanghaitech.edu.cn






















返回原图
/