Quanjiang Ji

Date:2018-09-04Views:2998设置

Quanjiang Ji Group


Principal Investigator
Quanjiang Ji (季泉江),Associate Professor、PI
Address: 393 Huaxia Middle Road, Pudong, Shanghai, China, 200120

Email: quanjiangji@shanghaitech.edu.cn


B.S., Nanjing University, 2005-2009;

Ph.D., University of Chicago (Advisor: Prof. Chuan He), 2009-2014;

Postdoc., University of California, Berkeley (Advisor: Prof. Michelle Chang), 2014-2016.


Awards:

Camille and Henry Dreyfus Postdoctoral Fellowship, 2015; 

Chinese Government Award for Outstanding Self-Financed Students Abroad (国家优秀自费留学生), 2013; 

The Everett E Gilbert Memorial Prize, 2012.


Research


 The emergence of drug-resistant human pathogens has posed a severe public crisis worldwide. To counter infections caused by major human pathogens, we aim to create novel genome editing tools, address fundamental infection and drug-resistant mechanisms, and develop new therapeutic means with the utilization of multiple approaches (chemical, biological, and engineering).

Genome editing in human pathogens: Genetics is the key means to study bacterial physiology. However, traditional genetic manipulation methods in major human pathogens remain as time-consuming and laborious endeavors. We have created rapid and highly efficient genetic manipulation tools in multiple major human pathogens, including Staphylococcus aureus (JACS, 2017; Chem Sci, 2018), Pseudomonas aeruginosa (iScience, 2018), and Klebsiella pneumoniae (Appl Environ Microbiol, 2018) by engineering the powerful CRISPR/Cas9 genome editing technology and deaminase-mediated base editing systems. These tools have been requested and utilized by numerous research groups worldwide and are/will be available in Addgene (http://www.addgene.org/Quanjiang_Ji/).

 We utilize protein engineering and synthetic biology approaches to develop genome-wide screening tools and aim to construct label-free gene-knockout libraries in multiple human pathogens. The development of these tools will advance fundamental physiology studies as well as novel drug-target exploration.

 We study fundamental DNA recognition and cleavage mechanisms of CRISPR systems. We design, engineer, and functionalize CRISPR systems for diverse applications, in particular in the study of infectious diseases.


Fundamental infection and drug-resistant mechanisms: We study basic infection and drug-resistant mechanisms in major human pathogens by taking advantages of structural biology and genome editing approaches (PNAS, 2018; Mol Microbiol, 2018). Recently, we focused on elucidating the molecular mechanisms of nicotianamine-like metallophore-mediated transition metal acquisition processes as well as biofilm-formation mechanisms of several cell surface proteins in human pathogens. We are also interested in small-molecule signaling and regulatory pathways that affect bacterial pathogenesis and drug resistance.

Therapeutic means against infections: We develop therapeutic antibodies and small molecules targeting key virulence or drug-resistant proteins, in particular the extracellular proteins that play vital roles in bacterial metal acquisition and biofilm formation. We aim to identify new drug targets using the mutant libraries we are currently constructing and screen effective antibodies or small molecules against them.



Publications

2018


6. Wang, Y., Wang, S., Chen, W., Song, L., Shen, Z., Yu, F., Li, M., Ji, Q.*(2018) Precise and efficient genome editing in Klebsiella pneumoniaeusing CRISPR-Cas9 and CRISPR-assisted cytidine deaminase. Appl Environ Microbiol DOI: 10.1128/AEM.01834-18


5. Chen, W., Zhang, Y., Zhang, Y., Pi, Y., Gu, T., Song, L., Wang, Y., Ji, Q.* (2018) CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. iScience 6: 222-31.


4. Wei, W.#, Zhang, Y.#, Gao, R., Li, J., Xu, Y., Wang, S., Ji, Q.*, Feng, Y.* (2018) Crystal structure and acetylation of BioQ suggests a novel regulatory switch for biotin biosynthesis in Mycobacterium smegmatis. Mol Microbiol DOI: 10.1111/mmi.14066.


3. Song, L., Zhang, Y., Chen, W., Gu, T., Zhang, S.Y., Ji, Q.* (2018) Mechanistic insights into staphylopine-mediated metal acquisition.  Proc Natl Acad Sci U S A 115: 3942-7.


2. Gu, T.#, Zhao, S.#, Pi, Y., Chen, W., Chen, C., Liu, Q., Li, M., Han, D.*, Ji, Q.* (2018) Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase. Chem Sci9: 3248-53.


2017


1. Chen, W., Zhang, Y., Yeo, W.S., Bae, T., Ji, Q.* (2017) Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system. J Am Chem Soc 139: 3790-5.


PRIOR TO SHANGHAITECH


7. Fu, Y., Luo, G.Z., Chen, K., Deng, X., Yu, M., Han, D., Hao, Z., Liu, J., Lu, X., Doré, L.C., Weng, X., 
Ji, Q., Mets, L., He, C. (2015) N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell. 161, 879-92.


6. Shan, C.#, Elf, S.#, 
Ji, Q., Kang, H.B., Zhou, L., Hitosugi, T., Jin, L., Lin, R., Zhang, L., Seo, J.H., Xie, J., Tucker, M., Gu, T.L., Sudderth, J., Jiang, L., DeBerardinis, R.J., Wu, S., Li, Y., Mao, H., Chen, P.R., Wang, D., Chen, G.Z., Lonial, S., Arellano, M.L., Khoury, H.J., Khuri, F.R., Lee, B.H., Brat, D.J., Ye, K., Boggon, T.J., He, C., Kang, S., Fan, J.*, Chen, J.* (2014) Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol Cell. 55, 552-65.


5. 
Ji, Q.#, Zhao, B.S.#, He, C.* (2013) A highly sensitive and genetically encoded fluorescent reporter for ratiometric monitoring of quinones in living cells. Chem Commun. 49, 8027-9.


4. 
Ji, Q., Zhang, L., Jones, M.B., Sun, F., Deng, X., Liang, H., Cho, H., Brugarolas, P., Gao, Y.N., Peterson, S.N., Lan, L., Bae, T., He, C.* (2013) Molecular mechanism of quinone signaling mediated through S-quinonization of a YodB family repressor QsrR. Proc Natl Acad Sci U S A. 110, 5010-5.


3. Sun, F., Ding, Y., 
Ji, Q., Liang, Z., Deng, X., Wong, C.C., Yi, C., Zhang, L., Xie, S., Alvarez, S., Hicks, L.M., Luo, C., Jiang, H., Lan, L.*, He, C.* (2012) Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc Natl Acad Sci U S A. 109, 15461-6.


2. 
Ji, Q.#, Zhang, L.#, Sun, F., Deng, X., Liang, H., Bae, T., He, C.* (2012) Staphylococcus aureus CymR is a new thiol-based oxidation-sensing regulator of stress resistance and oxidative response. J Biol Chem. 287, 21102-9.


1. Sun, F.
#Ji Q.#, Jones, M.B., Deng, X., Liang, H., Frank, B., Telser, J., Peterson, S.N., Bae, T.*, He, C.* (2012) AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureusJ Am Chem Soc. 134, 305-14.


(# co-first author; * corresponding author)



Patents

6. 季泉江、王宇。一种用于肺炎克雷伯菌基因编辑的双质粒系统。申请号:201811039504.9

5. 季泉江、王宇。一种肺炎克雷伯菌基因编辑的表达载体。申请号:201811039489.8

4. 季泉江、陈未中。一种pnCasPA-BEC质粒及其应用。申请号:201810767194.6

3. 季泉江、陈未中。一种pCasPA/pACRISPR双质粒系统及其应用。申请号:201810766759.9

2. 季泉江、顾桐年。一种pnCasSA-BEC质粒及其应用。申请号:201810169946.9

1. 季泉江、陈未中。一种pCasSA质粒及其应用。申请号:201611255504.3



Group Activities


Current Group Members

Weizhong Chen(陈未中)

Research assistant professor 

Email: chenwzh@shanghaitech.edu.cn

Yu Wang (王宇)

Postdoc 

Email: wangyu@shanghaitech.edu.cn

Zhaowei Wu (吴兆韡)

Postdoc 

Email: wuzw1@shanghaitech.edu.cn

Tongnian Gu (顾桐年)

Graduate student 

Email: gutn@shanghaitech.edu.cn

Yifei Zhang (张翼飞)

Graduate student 

Email: zhangyf1@shanghaitech.edu.cn

Yishuang Pi (皮义双)

Graduate student 

Email: piysh@shanghaitech.edu.cn

Ya Zhang (张雅)

Graduate student

Email: zhangya@shanghaitech.edu.cn

Zhipeng Wang(王志鹏)

Graduate student

Email: wangzhp@shanghaitech.edu.cn

Yujue Wang(王玉珏)

Graduate student

Email: wangyj6@shanghaitech.edu.cn

Hongyuan Zhang (张洪源)

Graduate student

Email: zhanghy2@shanghaitech.edu.cn

Yani Zhao (赵亚妮)

Undergraduate student

Email: zhaoyn1@shanghaitech.edu.cn

Chang Liu (刘畅)

Undergraduate student

Email: liuchang2@shanghaitech.edu.cn


Former Group Members


返回原图
/