潘义明

当前位置:首页  教职员工  常任教授  潘义明

Pan’s Light and Free Electron Group (Pan's LiFE课题组)


课题组长

 

自述:青椒一枚,物理小白,做梦时是会飞的青蛙🐸

Group Leader:  潘义明,Assist. Prof. Yiming Pan, PI

Address: 物质学院7号楼-211,Buidling 07-211, SPST, ShanghaiTech 

Emailyiming.pan@shanghaitech.edu.cn

Phone: (+86) 19821952722

ORCID and Researcher ID: 0000-0003-4391-0226

Google Scholar

https://scholar.google.co.il/citations?user=tDrBbUsAAAAJ&hl=en;

ResearchGate:

https://www.researchgate.net/profile/Yiming-Pan

知乎-科普博主@Yiming Pan

CV:

2023.03 - 至今       上海科技大学 (ShanghaiTech University)助理教授,研究员独立PI

2020. 09 - 2023. 03 以色列理工大学(Technion) 博士后 (导师: Daniel Podolsky, Moti Segev)

2018. 09 - 2020. 09 威兹曼研究所(Weizmann) 博士后(导师: Yaron Silberberg, Nir Davidson)

2016. 09 - 2018. 09 特拉维夫大学(Tel Aviv University) 博士后(导师: Avraham Gover)

2010.09 - 2016. 06 南京大学(Nanjing University)  物理学院 理论物理系/专业  博士(导师:王伯根)

2006. 09 - 2010. 06 安徽大学(Anhui University)  物理学院 应用物理系/专业  学士


研究介绍

 

量子,量子,还是TMD量子!强场,强场,还是TMD强场!

 1. 超快,强场和量子光和物质相互作用

激光诱导的自由电子加速(DLA)和自由电子辐射(FEL)

光子诱导的近场电子显微镜(PINEM)

阿秒动力学调控以及量子弱测量

 2. 拓扑光子学和量子模拟

激光直写,等离子体激化,微波等波导中的拓扑光子学。

超快PINEM电子合成维度。拓扑Floquet时间晶体,非线性光子时间晶体。

时间调制的动量带隙孤子,次谐波产生和非线性调制不稳定性等。

3. 凝聚态和场论

Weyl半金属的手性输运,二维材料的量子输运,Weyl半金属光学行为。

       在周期驱动系统中的量子反常和Callan-Harvey机制。

 

光和自由电子 (大图景)

在强场和量子领域中,研究自由电子和光的相互作用。

应用物理目标是实现电子和光场之间的能量、动量和信息的可控转移。

基础物理目标是探索电磁相互作用的深层结构。

注:我们关心电子本身,光本身,而不是材料本身,材料只是“第三者”而已 (third medium)。

但我们也要合适材料来实现相位匹配和场增强。

 

关于本课题组的研究目标和动机,言以蔽之:

· 哲学: “潘兄,会不会光就是电,电就是光?” 

— Zhaopin Chen (Technion)

· Goal: “Shaping electron with light, shaping light with electron.”  

— Ido Kaminer (Technion)

· LiFE Principle: Free electron and photon can exchange energy, momentum, and even information at the quantum level. 

— Yiming Pan (ShanghaiTech) 

 [Rep. Prog. Phys. 88 017601(2025); PRL 132, 3 (2024): 035001; Light Science & Applications 12:267 (2023); Science Advances 9, eadg8516(2023); PRL 126, 137403 (2021); PRL122.183204 (2019).]


Research I:

• Floquet engineering in optics and condensed matters: Floquet engineering is a paradigm of tailoring and manipulating a system by a periodic drive [Nature Communications (2022); Laser & Photon. Rev. (2022); Laser & Photon. Rev. (2015)].

 

 

 Momentum gaps (k-gaps) and energy-momentum gaps(ωk-gaps) [PRL 130, 233801 (2023)]

 

 Floquet gauge anomalies in periodically driven systems: Anomalies are not dangerous, and they are ubiquitous associated with quantum vacuum and topology. We are focusing on exploring anomalies in driven systems [Physical Review Letters 130, 223403 (2023); ].

 

• Weak measurement and its realizations. Weak measurement can demonstrate the transition from quantum to classical [Light Science & Applications 12:267 (2023); Nature Physics, 16(12), 1206-1210 (2020).]. However, decoherence only leads to the statistics.

 

 

Riemann Hypothesis in quantum physics. Riemann hypothesis equals to Quantum mechanics?

 

 

Prompt engineering for writing and free electron quantum neural networks

 

Prompt engineering三原则:

Principle 1: be very specific in yourinstructions.

Principle 2: is to ask GPT-3 to break itswork into small chunks.

Principle 3: ask GPT-3 to check and improve its own output.


自由电子量子神经网络:

I know nothing yet... But I will.


PDENet 数据库:

算力,算法,数据,数据,数据...


Research II:

• Ultrafast electron generation and manipulation, and strong-field electron photon coupling at discontinuity. 

• Design an ultrafast photoelectron gun and realize multi-photon free-free transition for low-energy free electrons.

• Floquet quantum simulators: optics, microwave, sounds, atoms and free electrons.

 

 

科学原理:

一言以蔽之,实现和探测超快电子和超快光子的量子纠缠!

 

基础科学价值和产品化应用前景:

首先,结合光学探测器和直接电子探测器实现时间关联符合测量,用于研究自由电子和光子的量子纠缠。其次,完成平台搭建后,进行优化和升级,并最终实现产品化,实现超快电子量子显微镜”可广泛使用的实验平台!



教学理念

 

有教无类。

 

Equally access to education to all individualswithout discrimination (in Chinese, “有教无类”)

· To educate college students&kids: The first principle for me is to admit my stupidity in front of them.

· To teach graduate students&postdocs: My job is to support them in achieving success in science and technology.

· To teach the public: The most critical aspect of disseminating information to the public in determining: What is NOT science!

物理类科普和社区建设 知乎: https://www.zhihu.com/people/yimingpan-1204/columns


LiFE课题组成员

 

慢慢来,人总会自己成长的!

 

硕士研究生 

2024 赵梓睿 (实验搭建,超快光电子调制)

2023 何金泽 (Floquet 工程学, 量子反常)

2024 陈丹妮(固体高次谐波,k-gap,量子模拟)

2023 陈若愚 (光机所,自由电子量子光学,和超快电镜)

2023 张亮 (孤子,动量隙k-gap,光学时间晶体)

2023 谭湘婷 (转组)


博士研究生 

潘晨浩 (光机所,强场物理,量子光学等)


本科生训练 

孙嘉祥 (实验室搭建,声致发光量子模型)

吴泽一(实验室搭建,量子光学教学平台)

宋屿珩(COMSOL仿真,quantum shaping of ultrafast electrons)

乐子萱(自由电子卷积神经网络,时空斑图生成)

姬超燃 (PDENet数据库搭建)

RA

2023.9-2024.1 沈文淏 (目前在加拿大麦吉尔大学读研)

2024.2-2024.5 范止维 (孤子,光学微腔,人工智能等,英国Newcastle University 博后)

2024.5-2024.9 陈丹妮 (格点模型计算,目前在课题组 读研)


注1:LiFE课题组,亟需有实验和工程能力和兴趣的学生。

注2:对LiFE课题组感兴趣的研究生和博士生再加入课题组之前,一般会有2-3个月的组内面试过程,因此建议提前跟导师进行沟通。


发表论文

 

发表,是一种LiFE,就像吃饭睡觉打豆豆一样。


2025

·      Pan, Y., Chen, D., Xu, X., Chen, Z. and Wang, H.,  Amplifying solid-state high harmonic generations with momentum k-gaps in band structure engineering. arXiv:2503.21549 (2025).

·      Zhang, L., Fan*, Z. and Pan*, Y., Event Soliton Formation in Mixed Energy-Momentum Gaps of Nonlinear Spacetime Crystals. arXiv:2503.16113(2025).

·      Li, C., Zhang, L., Zheng*, D., Liu*, X. and Pan*, Y., Photon-recycling dielectric laser accelerator. arXiv:2501.05038(2025).

·  Zhang, Bin, Reuven Ianconescu, Aharon Friedman, Jacob Scheuer, Mikhail Tokman, Yiming Pan*, and Avraham Gover*. Shape-Dependence of Spontaneous Photon Emission by Quantum Electron Wavepackets and the QED Origin of Bunched Electron Beam Superradiance. Rep. Prog. Phys. 88 017601(2025).


2024

·      Pan, Y.*, Zhang, B.*, & Podolsky, D. Synthetic dimensions using ultrafast free electrons. ACS Photonics 2024, 11, 9, 3563–3569 

·      Zeng, Y., Zhang, B., Cao, K., Liu, X.J. and Pan*, Y., Auger photoemission as a laser-like coherent cathode. arXiv:2405.12133(2024).

·      Hu, P., Wu, H.*, Xie, P., Zhuo, Y., Sun, W., Sheng, Z., & Pan, Y. *. Hearing dynamical Floquet-Thouless pump of sound pulse. Phys. Rev. B (2024) 110, 085137.

·      Yiming Pan*, and Ruoyu Yin. Constructing Berry-Maxwell equations with Lorentz invariance and Gauss' law of Weyl monopoles in 4D energy-momentum space.  Phys. Rev. B (2024) 110, 075139.

·      Kiselev, Egor I., and Yiming Pan. Symmetry Breaking and Spatiotemporal Pattern Formation in Photonic Time Crystals. arXiv:2404.16809 (2024).

·  Zhang, Bin, Reuven Ianconescu, Aharon Friedman, Jacob Scheuer, Mikhail Tokman, Yiming Pan*, and Avraham Gover*. Shape-Dependence of Spontaneous Photon Emission by Quantum Electron Wavepackets and the QED Origin of Bunched Electron Beam Superradiance. arXiv:2401.05978 (2024).

· Pan, Y.*, Ruoyu Yin*, Yongcheng Ding, Huaiqiang Wang, Daniel Podolsky, and Bin Zhang. Free electron topological bound state induced by light beam with a twisted wavefront. arXiv:2401.00723 (2024).

· Eldar, Maor, Zhaopin Chen, Yiming Pan, and Michael Krüger. Self-trapping of slow electrons in the energy domain. Physical Review Letters 132, 3 (2024): 035001.

2023

· Zhaopin Chen, Bin Zhang, Yiming Pan*, Michael Krueger, Quantum wavefunction reconstruction by free-electron spectral shearing interferometry. Science Advances 9, eadg8516(2023)

· Yiming Pan†, Moshe-Ishay Cohen†, Mordechai Segev, Superluminal k-gap solitons in photonic time-crystals with Kerr nonlinearity. Physical Review Letters 130, 233801 (2023)

· Pan, Y.*, Chen, Z.*, Wang, B., & Poem, E. Photonic π-mode anomaly in (1+1) dimensional periodically driven topological/normal insulator heterostructures. Physical Review Letters 130, 223403 (2023).

· Pan, Y. *, Cohen, E.*, et al. Demonstration of weak measurement, projective measurement, and quantum-to-classical transitions in electron-photon interactions. Light Science & Applications 12:267 (2023). 

· Kiselev, Egor I., and Yiming Pan. Light controlled THz plasmonic time varying media: momentum gaps, entangled plasmon pairs, and pulse induced time reversal. arXiv:2311.17870 (2023).

· Mei, Xuehan, RongweiZha, Yiming Pan, Shaoyi Wang, Bin Sun, Cheng Lei, ChangjunKe, Zongqing Zhao, and Du Wang. Dielectric Laser Accelerators Driven by Ultrashort, Ultraintense Long-Wave Infrared Lasers. Ultrafast Science 3 (2023): 0050.

· Cohen, Moshe-Ishay, Yiming Pan, Ohad Segal, and Mordechai Segev. Annihilation of k-gap Solitons in Photonic Time Crystals. In CLEO: Fundamental Science, pp. FTu3D-6. Optica Publishing Group, 2023.

· Yiming Pan†, and Ruoyu Yin. Constructing Berry-Maxwell equations with Lorentz invariance and Gauss' law of Weyl monopoles in 4D energy-momentum space. arXiv:2308.00612 (2023).

· Ding, Yongcheng, Yiming Pan, and Xi Chen. Superoscillating Quantum Control Induced By Sequential Selections. arXiv:2305.04303 (2023).

· Yiming Pan†, Bin Zhang, and Daniel Podolsky. Low-energy Free-electron Rabi oscillation and its applications. arXiv:2304.12174 (2023).

2022

· Wang, B., Quan, J., Han, J., Shen, X.*, Wu, H.*, and Pan, Y.*, Observation of Photonic Topological Floquet time crystals. Laser & Photon. Rev, 10.1002/lpor.202100469 (2022). 

· Qingqing Cheng, Huaiqiang Wang, Yongguan Ke, Tao Chen, Ye Yu, Yuri S. Kivshar*, Chaohong Lee*, and Yiming Pan*, Asymmetric topological pumping in nonparaxial photonics. Nature Communications. https://doi.org/10.1038/s41467-021-27773 (2022). 

2021

· Ang Li, Yiming Pan, Philip Dienstbier, and Peter Hommelhoff, Quantum interference visibility spectroscopy in two-color photoemission from tungsten needle tips. Phys. Rev. Lett. 126, 137403 (2021). 

· Yiming Pan†*, and Avraham Gover. Beyond Fermi's Golden Rule in Free-Electron Quantum Electrodynamics: Acceleration/Radiation Correspondence. New Journal of Physics 23 (6), 063070 (2021). 

2020

· Yiming Pan†*, Bing Wang, Time-crystalline phases and period-doubling oscillations in one-dimensional Floquet topological insulators. Physical Review Research, 2(4), 043239 (2020).

· Pan, Y.†*, Zhang, J., Cohen, E., Wu, C.W., Chen, P.X. and Davidson, N., Weak-to-strong transition of quantum measurement in a trapped-ion system. Nature Physics, 16(12), 1206-1210 (2020). 

2019

· Chen, T., Yu, Y., Song, Y., Yu, D., Ye, H., Xie, J., Shen, X., Pan, Y. and Cheng, Q., 2019. Distinguishing the topological zero mode and Tamm mode in a microwave waveguide array. Annalen der Physik, 531(12), p.1900347. 

· Ying Yang, Yiming Pan*. Engineering zero modes, Fano resonance and Tamm surface states of 'bound states in the gapped continuum'. Optics Express 27 (23), 32900-32911 (2019). 

· Q. Q. Cheng†, Yiming Pan†*, Huaiqiang Wang†, et al. Observation of anomalous π modes in photonic Floquet engineering. PhysRevLett.122.173901 (2019). 

· Yiming Pan†*, Bin Zhang†, and Avraham Gover. Anomalous Photon-induced Near-field Electron Microscopy. PhysRevLett.122.183204 (2019). 

· Yiming Pan†*, and Avraham Gover. Spontaneous and Stimulated Emissions of Quantum Free-Electron Wavepackets - QED Analysis. PhysRevA.99.052107 (2019). 

2018

· Yiming Pan†*, and Avraham Gover. Spontaneous and Stimulated Radiative emission of Modulated Free-Electron Quantum wavepackets-Semiclassical Analysis. Journal of Physics Communications 2.11 (2018): 115026.

· Cheng, Q., Chen, T., Yu, D., ... & Pan, Y*. Flexibly designed spoof surface plasmon waveguide array for topological zero-mode realization. Optics Express, 26(24), 31636-31647 (2018). 

· Gover, Avraham, Yiming Pan*. Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket. Physics Letters A 382.23 (2018): 1550-1555. 

2017

· Xing-Chen Pan, Yiming Pan, et al. Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe 2. Frontiers of Physics 12, 3 (2017): 127203. 

· Yiming Pan. How to measure the canonical commutation relation [x, p]=iℏ in quantum mechanics with weak measurement? arXiv:1702.08518 (2017)

2016

· H.Q.Wang, Lubing Shao, Yiming Pan, et al. Flux-driven quantum phase transitions in two-leg Kitaev ladder systems. Physics Letters A 380, 46 (2016): 3936-3941. 

· Erfu Liu, Mingsheng Long, Junwen Zeng, Wei Luo, Yaojia Wang, Yiming Pan, et al. High responsively phototransistors based on few-layer ReS2 for weak signal detection. Advanced Functional Materials 26, 12 (2016): 1938-1944. 

· Wang, Yaojia, Erfu Liu, Huimei Liu, Yiming Pan, et al. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe 2. Nature Communications 7 (2016): 13142. 

· Zhihao Yu†, Zhun-Yong Ong†, Yiming Pan†, et al. Realization of Room-Temperature Phonon-limited Carrier Transport in Monolayer MoS2 by Dielectric and Carrier Screening. Advanced Materials 28, 3 (2016): 547-552. 

2015

· Q. Q. Cheng†, Yiming Pan†, et al. Topologically protected interface mode in plasmonic waveguide arrays. Laser & Photon. Rev. doi: 10.1002/lpor.201400462(2015) 

· Daowei He†, Yiming Pan†, et al. Tunable Van der Waals heterojunctions with hybrid organic/inorganic semiconductors. Applied Physics Letters, 107(18), p.183103 (2015) 

· Miao Wang, Xiaojuan Lian, Yiming Pan, et al. A selector device based on graphene-oxide heterostructures for memristercrossbar application. Appl. Phys. A 120:403-407 (2015) 

· Yang Cui†, Run Xin†, Zhihao Yu†, Yiming Pan, et al. High-Performance Monolayer WS2 Field-effect Transistors on High-κDielectrics. Adv. Mater. doi:10.1002/adma.201502222 (2015) 

2014

· Zhihao Yu†, Yiming Pan†, et al. Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering. Nat. Commun. 5, 5290 (2014) 

· Min Qian, Yiming Pan, et al. Tunable, Ultralow-Power Switching in Memristive Devices Enabled by a Heterogeneous Graphene–Oxide Interface. Adv. Mater. 26, 3275–3281 (2014) 

· Xiaxin Ding, Yiming Pan, et al. Strong and nonmonotonic temperature dependence of Hall coefficient in superconducting KxFe2−ySe2 single crystals. Phys. Rev. B 89, 224515 (2014) 

· Enming Shang, Yiming Pan, et al. Detection of Majorana fermions in an Aharonov-Bohm interferometer. Chinese Phys. B 23, 057201 (2014) 

· H.Q.Wang, R.Wang, Yiming Pan, et al. Entanglement spectrum of topological Weyl semimetal. EPL 107, 40007 (2014) 

· Yiming Pan, et al. Mass classification and manipulation of zero modes in one-dimensional Dirac systems. arXiv: 1407.3874v1 (2014)

部分代表性论文:


· Zhaopin Chen, Bin Zhang, Yiming Pan*, Michael Krueger, Quantum wavefunction reconstruction by free-electron spectral shearing interferometry. Science Advances (2023)

· Yiming Pan, Moshe-Ishay Cohen, Mordechai Segev, Superluminal k-gap solitons in photonic time-crystals with Kerr nonlinearity. PRL 130, 233801 (2023).

· Pan, Y.†*, et al. Demonstration of weak measurements, projective measurements, and quantum-to-classical transitions in ultrafast free electron-photon interactions. Light: Science & Applications (2023)

· Pan, Y†*, et al. Floquet gauge anomaly inflow and arbitrary fractional charge  in periodically-driven topological/normal insulator heterostructures. PRL 130, 223403 (2023).

· Q. Cheng, &Y. Pan*. Asymmetric topological pumping in nonparaxial photonics. Nat. Commun. 10.1038 (2022)

· B. Wang, &Y. Pan*. Observation of Photonic Topological Floquet time crystals. Laser & Photon. Rev, 10.1002/lpor.202100469 (2022)

· Y. Pan†*, and A. Gover. Beyond Fermi's Golden Rule in Free-Electron Quantum Electrodynamics: Acceleration/Radiation Correspondence. New Journal of Physics 23 (6), 063070 (2021)

· Pan, Y.†*, et al., Weak-to-strong transition of quantum measurement in a trapped-ion system. Nat. Phys. 16(12), 1206-1210 (2020)

· Yiming Pan†*, et al., Anomalous Photon-induced Near-field Electron Microscopy. PRL 122,183204 (2019)

· Q. Cheng†, Y. Pan†*, et al. Observation of anomalous π modes in photonic Floquet engineering. PRL 122.173901 (2019)

· Gover, Y. Pan*. Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket. Phys. Lett. A 382.23 (2018): 1550-1555

· Z. Yu†, Z. Ong†, Y. Pan†, et al. Realization of Room-Temperature Phonon-limited Carrier Transport in Monolayer MoS2 by Dielectric and Carrier Screening. Adv. Mater. 28, no. 3 (2016): 547-552.

· Q. Cheng†, Y. Pan†, et al. Topologically protected interface mode in plasmonic waveguide arrays. Laser & Photon. Rev. 10.1002/lpor.201400462(2015)

· M. Qian, Y. Pan, et al. Tunable, Ultralow-Power Switching in Memristive Devices Enabled by a Heterogeneous Graphene–Oxide Interface. Adv. Mater. 26, 3275-3281 (2014)

· Z. Yu†, Y. Pan†, et al. Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering. Nat. Commun. 5, 5290 (2014)


返回原图
/