王依宵

时间:2023-04-11浏览:2159设置

王依宵课题组介绍


课题组长
  

王依宵,副教授、研究员、博导

Yixiao Wang, Tenure-Track Associate Professor

通讯地址:物质学院8号楼305

电子邮件:wangyx9@shanghaitech.edu.cn

个人简历:

2005-2009 北京化工大学,学士

2010-2013 厦门大学,硕士

2013-2017 荷兰代尔夫特理工大学, 博士

2018-2019 美国能源部爱达荷国家实验室,博士后

2019-2023 美国能源部爱达荷国家实验室,研究员

2023-至今 上海科技大学,副教授,研究员


研究介绍

本课题组的主要研究方向是基于瞬时产物分析技术及其在环境催化和能源催化中的应用。利用瞬时产物分析技术,解析催化反应过程中的微观动力学,表征基元反应步骤,从分子和原子角度研究催化机理。

本课题组长期诚聘助理研究员、博士后研究员、硕博连读研究生。欢迎对催化,表面化学, 动力学感兴趣的学生学者加入,有意者请邮箱联系:wangyx9@shanghaitech.edu.cn

  



发表论文


1.  Wang,Y., Snyder, S., Catalytic processes to enable decarbonization in a net zero carbon world, ChemSusChem, 2022,https://doi.org/10.1002/cssc.202201290

2.     Wang, Y., Sourav, S.,Fushimi, R.R,Deciphering the mechanistic role of individual oxide phases and their combinations in supported Mn-Na2WO4 catalysts for oxidative coupling of methane, ACS Catalysis 2022, 12, 11886-11898

3.     Wang, Y., Wang, B.,Fushimi, R.R,Mechanistic pathways and role of oxygen in oxidative coupling of methane derived from transient kinetic studies, Catalysis Today, 2022. (In Press)

4.     S Sourav, D Kiani, Y Wang*, J Baltrusaitis, RR Fushimi, IE Wachs, Molecular structure and catalytic promotional effect of Mn on supported Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) reaction, Catalysis Today, 2022. (In Press, corresponding author)

5.     Wang, Y., Qian J., Fortunelli A., Goddard III W.A. & Fushimi, R. (2021) Understanding Reaction Networks through Controlled Approach to Equilibrium Experiments Using Transient Methods, Journal of the American Chemical Society, 143 (29), 1099811006

6.     Sourav, S., Wang, Y.*; Kiani, D.; Baltrusaitis, J.; Fushimi, R. R.; Wachs, I. E., (2021) Resolving the Types and Origin of Active Oxygen Species Present in Supported Mn-Na2WO4/SiO2 Catalysts for Oxidative Coupling of Methane. ACS Catalysis, 11(16)10288-10293. (corresponding author)

7.     Sourav, S., Wang, Y.*, Kiani, D., Baltrusaitis, J., Fushimi, R.R. and Wachs, I..E. (2021), New Mechanistic and Reaction Pathway Insights for Oxidative Coupling of Methane (OCM) over Supported Na2WO4/SiO2 Catalysts. Angew. Chem. Int. Ed. (corresponding author)

8.      Wang, Y., Yablonsky, G., Fushimi, R.R, Precise composition/kinetic characterization of solid catalysts using temporal analysis of products. Catalysis. 2021. 114-152. (book chapter)

9.     Wang, Y., Fushimi, R.R, Springer Handbook of Advanced Catalyst Characterization: Temporal Analysis of Product (TAP) (book chapter)

10.  Wang, Y., Kunz, M. R., Siebers, S., Rollins, H., Gleaves, J., Yablonsky, G., & Fushimi, R. (2019). Transient kinetic experiments within the high conversion domain: The case of ammonia decomposition. Catalysts, 9(1),104.

11.  Wang, Y., Kunz, M. R., Fang,T., Yablonsky, G., & Fushimi, R. (2019). Accumulation dynamic as a new tool for catalyst discrimination: An example from ammonia decomposition. Industrial & Engineering Chemistry Research. 58 (24), 10238-10248

12.  Wang, Y., Kunz, M. R., Constales,D., Yablonsky, G., & Fushimi, R. (2019). Rate/Concentration Kinetic Petals from Pulse-Response Transient Studies: Surface Processes Examined from Ammonia Decomposition Experiments. The Journal of Physical Chemistry A 123 (40), 8717-8725

13.  Wang, Y., & Makkee, M. (2018). Fundamental understanding of the Di-Air system (an alternative NOx abatement technology). I: The difference in reductant pre-treatment of ceria. Applied Catalysis B: Environmental. 223, 125-133.

14.  Wang, Y., & Makkee, M. (2018). The influence of CO2 on NO reduction to N2 over reduced ceria  based catalyst, Applied Catalysis B: Environmental. 221, 196-205

15.  Wang, Y., & Makkee, M. (2018). Adverse effects of Potassium on NOx reduction over Di-Air catalyst (Rh/La- Ce-Zr). Applied Catalysis B: Environmental 117895

16.  Wang, Y., Kapteijn, F., & Makkee, M. (2018). NOx reduction in the Di-Air system over noble metal promoted ceria. Applied Catalysis B: Environmental, 231, 200-212.

17.  Wang, Y., & Makkee, M. (2018). A new dynamic N2O decomposition system by exploring reduced Rh/ceriazirconia with deposited carbon: from mechanistic insight to principle application. Catalysis Science & Technology 11 (2), 671-680

18.  Wang, Y., & Makkee, M., (2017). Reaction Mechanism Study of the Di-Air System and Selectivity and Reactivity of NO Reduction in Excess O2. SAE International Journal of Engines, 10(2017-01-0910).

19.  Wang, Y., Oord, R., van der Berg, D., Weckhuysen,B., & Makkee, M., (2017). Oxygen Vacancies in reduced Rhand Ptceria for Highly Selective and Reactive Reduction of NO into N2 in excess of O2. ChemCatChem. 9(15), 2935-2938.

20.  Wang, Y., Posthuma de Boer, J., Kapteijn, F., & Makkee, M. (2016). Next Generation Automotive DeNOx Catalysts: Ceria What Else?. ChemCatChem, 8(1), 102-105. (Inside cover)

21.  Wang, Y., de Boer, J. P., Kapteijn, F., & Makkee, M. (2016). Fundamental Understanding of the Di-Air System: The Role of Ceria in NOx?. Topics in Catalysis, 59(10-12), 854-860.

   


本组成员


       


返回原图
/