许超课题组 | Chao Xu Research Group
Our research group at ShanghaiTech University is committed to advancing sustainable energy storage technologies, primarily focusing on lithium-ion and sodium-ion batteries. Utilizing advanced characterization techniques, particularly in situ and operando methods, we examine the fundamental mechanisms that govern battery performance. We investigate the development of layered oxide cathodes, emphasizing their structural properties and electrochemical performance to improve energy density and cycling stability. Through innovative theoretical and experimental approaches, we study critical materials such as Ni-rich and anion-redox layered oxides, focusing on their structural and electrochemical properties to enhance energy density and durability, while collaborating with leading research institutions for real-time analysis. Our research endeavors to bridge fundamental understanding with practical applications, contributing to the global transition toward renewable energy solutions.
Representatitive works:
Lithium-ion batteries
・Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater., 2021, 20, 84-92. https://doi.org/10.1038/s41563-020-0767-8
・Operando visualization of kinetically induced lithium heterogeneities in single-particle layered Ni-rich cathodes. Joule, 2022, 6, 2535-2546. https://doi.org/10.1016/j.joule.2022.09.008
・Phase Behavior during Electrochemical Cycling of Ni-Rich Cathode Materials for Li-Ion Batteries. Adv. Energy Mater., 2021, 11, 2003404. https://doi.org/10.1002/aenm.202003404
Sodium-ion batteries
・Enabling the synthesis of O3-type sodium anion-redox cathodes via atmosphere modulation. Nat. Commun., 2025, 16, 2343 https://doi.org/10.1038/s41467-025-57665-1
・Navigating low state of charge phase transitions in layered cathodes for long-life sodium-ion batteries. Energy Environ. Sci., 2025, 18, 6032-6042. https://doi.org/10.1039/D5EE00422E
|
---|
2006.08-2010.06 南京理工大学 本科 | Nanjing University of Science and Technology, BE
2010.08-2012.07 瑞典乌普萨拉大学 硕士 | Uppsala University, MSc
2012.11-2017.07 瑞典乌普萨拉大学 博士 | Uppsala University, PhD
2017.07-2018.02 瑞典乌普萨拉大学 博士后 | Uppsala University, Postdoc
2018.02-2021.05 英国剑桥大学 博士后 | University of Cambridge, Postdoc research associate
2021.06-至今 上海科技大学 助理教授、研究员 | ShanghaiTech University
CHEM2109 电化学原理、方法和应用(3学分研究生课程,春学期)
CHEM2126 电化学材料与器件(含实验)(2学分本研一体课程,秋学期)
- Enabling the synthesis of O3-type sodium anion-redox cathodes via atmosphere modulation.Nat. Commun. 16, 2343 (2025).https://doi.org/10.1038/s41467-025-57665-1
- Navigating low state of charge phase transitions in layered cathodes for long-life sodium-ion batteries.Energy Environ. Sci. (2025).https://doi.org/10.1039/D5EE00422E
- Insights into the Fast-Charging Capability of Layered Ni-Rich Cathodes in Full-Cell Lithium-Ion Batteries.ACS Appl. Energy Mater. 8 (11), 7351–7362 (2025).https://doi.org/10.1021/acsaem.5c00728
- Influence of Nickel-Content and Cycling Rate on the Phase Behavior of Layered Nickel-Rich Cathode Materials for Lithium-Ion Batteries.ACS Appl. Mater. Interfaces 17, 21122-21132 (2025).https://doi.org/10.1021/acsami.4c21038
- Well‐Defined Redox‐Active Hyperbranched Polymers for Flow Batteries: Harnessing Self‐Condensing Vinyl Copolymerization by Flow Chemistry.Angew Chem Int Ed e202507739 (2025).https://doi.org/10.1002/anie.202507739
- Operando single-particle imaging reveals that asymmetric ion flux contributes to capacity degradation in aged Ni-rich layered cathodes.Energy Environ. Sci. (2025).https://doi.org/10.1039/D5EE00267B
- Methane Decomposition Enabled by Molten Alkali Chloride Electrolysis.ACS Catalysis 15, 3203-321 (2025).https://doi.org/10.1021/acscatal.4c06377
- Microstructures of layered Ni-rich cathodes for lithium-ion batteries.Chem. Soc. Rev. 53, 4707-4740 (2024).https://doi.org/10.1039/d3cs00741c
- Understanding the Structural and Electrochemical Properties of Anion-Redox O3-Na[Li1/3Mn2/3]O2 Cathode for Sodium-Ion Batteries.ChemistrySelect 9, e202404259 (2024).https://doi.org/10.1002/slct.202404259
- Tuning water-cellulose interactions via copper-coordinated mercerization for hydro-actuated, shape-memory cellulosic hydroplastics.Matter 7, 3036-3052 (2024).https://doi.org/10.1016/j.matt.2024.04.033
- Benchmarking the Performance of Moisture-Sensitive Battery Materials: the Importance of the Electrode Preparation Method.ACS Appl. Energy Mater. 6, 6883-6889 (2023).
- C13 NMR study of the electronic structure of lithiated graphite.Physical Review Materials 7, 065402 (2023).
- O3 to O1 Phase Transitions in Highly Delithiated NMC811 at Elevated Temperatures.Chem. Mater. 35, 4979-4987 (2023).
- Operando visualization of kinetically induced lithium heterogeneities in single-particle layered Ni-rich cathodes.Joule 6, 2535-2546 (2022).https://doi.org/10.1016/j.joule.2022.09.008
- Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries.Nat. Mater. 2021, 20, 84-92.https://doi.org/10.1038/s41563-020-0767-8
- Phase Behavior during Electrochemical Cycling of Ni-Rich Cathode Materials for Li-Ion Batteries.Adv. Energy Mater. 2021, 11, 2003404.https://doi.org/10.1002/aenm.202003404
- Unraveling and Mitigating the Storage Instability of Fluoroethylene Carbonate-Containing LiPF6 Electrolytes To Stabilize Lithium Metal Anodes for High-Temperature Rechargeable Batteries.ACS Appl. Energy Mater. 2019, 2, 4925-4935.https://doi.org/10.1021/acsaem.9b00607(Equal contribution)
- The Role of LiTDI Additive in LiNi1/3Mn1/3Co1/3O2/Graphite Lithium-Ion Batteries at Elevated Temperatures.J. Electrochem. Soc. 2018, 165, A40-A46.https://doi.org/10.1149/2.0231802jes
- LiTDI: A Highly Efficient Additive for Electrolyte Stabilization in Lithium-Ion Batteries.Chem. Mater. 2017, 29, 2254-2263.https://doi.org/10.1021/acs.chemmater.6b05247
- Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive.Chem. Mater. 2015, 27, 2591-2599.https://doi.org/10.1021/acs.chemmater.5b00339(Highly cited paper, Essential Science IndicatorsSM)
- Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study.J. Mater. Chem. A 2014, 2, 7256-7264.https://doi.org/10.1039/c4ta00214h
谭光速 (tangs@shanghaitech.edu.cn); 杨劭宇 (yangshy@shanghaitech.edu.cn)
杨俊隆 (yangjl2023@shanghaitech.edu.cn); 刘沁哲 (liuqzh2023@shanghaitech.edu.cn)
丁磊 (dinglei2024@shanghaitech.edu.cn); 张欣希 (zhangxx2024@shanghaitech.edu.cn); 秦泽屿 (qinzy2024@shanghaitech.edu.cn)
陶江伟(2025届硕士毕业生;CATL)
李闻达(2025届硕士毕业生;CATL)
王双宏(2025届硕士毕业生;BYD)