卓联洋

时间:2020-06-22浏览:10508设置

卓联洋课题组介绍

课题组长  研究介  发表论文  本组设备 现有成员  同组同心 毕业学生

 



 

卓联洋助理教授 | 研究员 | 博导

电子邮箱:zhuoly@shanghaitech.edu.cn 

通讯地址:上海市浦东新区华夏中路393号物质学院2号楼508

个人简介:

2011.9-2016.5     美国波士顿学院,获博士学位(Chia-Kuang Frank Tsung 教授组)

2016.8-2020.5    上海科技大学,担任助理研究员

2018.8-2019.12  美国斯坦福大学,访问学者(Yi Cui 院士组)

2020.6-               上海科技大学,担任课题组长、研究员、博士生导师、助理教授

主讲课程:《结构化学》、《无机合成化学》


 

 

Research directions



      My research interests mainly focus on solving problems in interdisciplinary of materialchemistry, and biology. Specifically, the structure tunable nanoporous composites were rationally designed for the applications in catalysis, biology, and energy fields.

      本组研究涉及材料、化学、生物等领域,具体为多孔复合材料的合成及其在催化、生物、能源等方向的应用研究。

 

课题组研究方向简介

(1)催化方向

围绕以晶体微孔材料调控多相催化过程和以晶格应变控制催化剂活性与选择性两方面进行设计,在原子与分子尺度上控制多相催化剂的微观结构,开发新一代金属有机框架(MOF)多层催化材料并进行应用研究。

利用微孔调控催化剂活性与选择性


利用多种表征技术在分子水平上探究催化剂的界面形式,探究宏观性能与微观结构的构效关系,配合模拟计算构建复合催化剂,探讨不同体系的催化路径及机理。

通过不同表征手段探究复合催化剂机理

 

(2)生物方向

将材料科学与合成生物学进行融合,制备新型生物活体功能材料(ELM),探索生物与非生物界面的相互作用,并进行生物催化、药物递送、生物电池等相关前沿技术开发。

多孔复合材料应用于药物递送


(3)能源方向

利用孔洞限域作用和协同效应,设计构建新型MOF复合材料,研究其在燃料电池太阳能电池的应用。

MOF复合材料助力燃料电池避免阳极催化剂毒化

 

招聘信息 

     本课题组长期诚聘博士后、研究生及本科生,欢迎具有材料、化学和生物等相关专业背景的学者及学生加盟!

     材料“双一流”博士后年薪30万,课题组支持申请各类人才项目,入选“博新计划”、“超博计划”等的博士后由上海市按照相关规定提供额外补贴;课题组每年固定招收研究生和本科生。

     本组提供完善的科研设备、良好的工作环境和舒适的沟通氛围,有意者请发送个人简历至zhuoly@shanghaitech.edu.cn

 

      目前在Nat. EnergyNat. Comm.J. Am. Chem. Soc.Angew. Chem. Int. Edit.Adv. Funct. Mater., Nano Lett.Chem. Mater., Chem. Sci.J. Mater. Chem. A, Small 等国际著名期刊上发表科研论文30余篇,部分代表性工作摘录如下:

 

1.   Vo, T.-H.; Lin, S.-W.; Lin, M.-C.; Kuan, P.-Y.; Chen, J.-H.; Huang, H.-K.; Liu, W.-T.; Xu, H.; Li, A.; Hsu, Y.-A.; Wan, L.; Lam, P.-K.*Chou, L.-Y.*Yang, H.-C.*; Shieh, F.-K.*  Exploring Enzyme Encapsulation Efficiency in MOFs Using Eco-Friendly Approaches  ChemSusChem, 2024, e202401568.

  


2.    Zhou L.; An Y.; Ma J.; Hao G.; Li Z.; Chen J.; Chou, L.-Y.* “A highly efficient synthetic strategy for de novo NP encapsulation into metal-organic frameworks: enabling further modulated control of catalytic properties  Chem. Sci., 2023, 14(45), 13126.

  


3.    An, Y.Chen, S.-Y.Zhou, L.Wang, B.Hao, G.Chen, J.Wang, Y.Zhang, H.; Peng, Z.; Yang, T.-C.; Yang, C.-M.; Chen, J.-L.; Tsung, C.-K.Liu, Z.*Chou, L.-Y.* Sintering resistance of Pd single atoms on steam-modified ceria: deciphering the role of hydroxyl groups J. Mater. Chem. A, 2023, 11(39), 21285.

  


4.     Liu, Y. ; Wu, M. ; Kang, A. ; Zhang, X. ; Xie, R. ; Huang, Y.; Huang, J. ; Chou, L.-Y.*; Zhong, C.* “Living seed materials made by metal–organic framework‐encapsulated bacillus subtilis spore” Adv. Funct. Mater., 2023, 34(11), 2309288. 


5.    An, Y.Chen, S.-Y.Wang, B.Zhou, L.Hao, G.Wang, Y.Chen, J.Tsung, C.-K.Liu, Z.*Chou, L.-Y.* Controlling the metal-support interaction with steam-modified ceria to boost Pd activity towards low-temperature CO oxidation J. Mater. Chem. A, 2023, 11(31), 16838.



6.    Si, X.; Zhao, H.; Yi, B.; Zhou, L.;Ling, Y.; An, Y.; Wang, Y.; Lee, H.K.; Tsung, C.-K.; Ma, Y.*; Chou, L.-Y.*. An archetype of the electron-unobstructed core-shell composite with inherent selectivity: conductive metal-organic frameworks encapsulated with metal nanoparticles Nanoscale, 2022, 14(27), 96552022 Nanoscale Hot Article


7.    Hsu, P.-H.; Chang, C.-C.; Wang, T.-H.; Lam, P.K.; Wei, M.-Y.; Chen, C.-T.; Chen, C.-Y.; Chou, L.-Y.*; Shieh, F.-K.* Rapid Fabrication of Biocomposites by Encapsulating Enzymes into Zn-MOF-74 via a Mild Water-Based ApproachACS Appl. Mater. Interfaces, 2021, 13(44), 52014.


8.    Lo, W.-S#; Chou, L.-Y. #; Young, A.; Ren, C.; Goh, T.-W.; Williams, B.P.; Li, Y.; Chen, S.-Y.;Ismail, M. N.; Huang, W.;Tsung, C.-K. “Probing the Interface between Encapsulated Nanoparticles and Metal−Organic Frameworks for Catalytic Selectivity Control” Chem. Mater. 2021, 33(6), 1946. Highlighted as Front Cover

 

9.    Chou, L.-Y.; Ye, Y.; Lee, H.K.; Huang, W.; Xu, R.; Gao, X.; Chen, R.; Wu, F.; Tsung, C.-K.; Cui, Y. “Electrolyte-Resistant Dual Materials for the Synergistic Safety Enhancement of Lithium-Ion Batteries” Nano Lett. 2021, 21(5), 2074.


10.    Ye, Y. #; Chou, L.-Y. #; Liu, Y.; Wang, H.; Lee, H.K.; Huang, W.; Wan, J; Liu, K.; Zhou, G.; Yang, Y.; Yang, A.; Xiao, X.; Gao, X.; Boyle, D.B.; Chen, H.; Zhang, W.; Kim, S.C.; Cui, Y. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries Nat. Energy, 2020, 5(10), 786. Highlighted as Front Cover


11.    Chen, S.-Y.; Lo, W.-S; Huang, Y.-D.; Si, X.; Liao, F. -S.; Lin, S.-W.; Williams, B. P.; Sun, T.-Q.; Lin, H.-W.; An, Y.; Sun. T.; Ma, Y.; Yang, H.-C.*; Chou, L.-Y.*; Shieh, F.-K.*; Tsung, C.-K.* “Probing Interactions between Metal−Organic Frameworks and Freestanding Enzymes in a Hollow Structure Nano Lett. 2020, 20, 9, 6630.


12.    Liu, X.-Y.; Lo, W.-S; Wu, C.; Williams, B. P.; Luo, L.; Li, Y; Chou, L.-Y.*;Lee, Y.*; Tsung, C.-K.* ‘Tuning Metal−Organic Framework Nanocrystal Shape through Facet-Dependent Coordination” Nano Lett. 2020, 20(9), 6630.


13.    Luo, L.; Lo, W.-S.; Si, X.; Li, H.; An, Y.; Qin, X.; Zhao, H; Zhu, Q; Chou, L.-Y.*; Li, T.*; Tsung, C.-K.* ”Directional Engraving within Single Crystalline Metal−Organic Framework Particles via Oxidative Linker Cleaving” J. Am. Chem. Soc. 2019, 141(51), 20365.


14.    Wei, T.-H.; Wu, S.-H.; Huang, Y.-D.; Lo, W.-S.; Williams, B. P.; Yang, H.-C.; Yu-Shen Hsu, Y.-S.; Chou, L.-Y.*; Tsung, C.-K.*; Shieh, F.-K.* ”Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks Nat. Comm. 2019, 10, 5002. 2019 EditorsHighlights on Organic Chemistry and Chemical Biology


15.   Wu, C.#; Chou, L.-Y. #; Lo, W.-S.; Long, L.; Si, X.; Tsung, C.-K.; Li, T. “Structural Control of Uniform MOF-74 Microcrystals for the Study of Adsorption Kinetics” ACS Appl. Mater. Interfaces, 2019, 11(39), 35820.

 

16.   Liu, X.-Y.; Zhang, F.; Goh, T.-W.; Li, Y.; Shao, Y.-C.; Luo, L.; Huang, W.; Long, Y.-T.; Chou, L.-Y.*; Tsung, C.-K.* “Using a Multi-Shelled Hollow Metal–Organic Framework as a Host to Switch the Guest-to-Host and Guest-to-Guest Interactions Angew. Chem. Int. Edit. 2018, 57(8), 2110.


17.  Giustra, Z. X. #; Chou, L. -Y. #; Tsung, C.-K.; Liu, S.-Y. “Kinetics of −CH2CH2− Hydrogen Release from a BN-cyclohexene Derivative” Organometallics, 2016, 35(15), 2425.


18.  Chou, L. -Y.; Hu, P.; Zhuang, J.; Morabito, J. V.; Ng K. –C.; Kao Y. –C.; Wang, S. -C.; Shieh, F. -K.; Kuo, C. -H.; Tsung, C.-K. “Formation of hollow and mesoporous structures in single-crystalline microcrystals of metal–organic frameworks via double-solvent mediated overgrowth” Nanoscale, 2015, 7(46), 19408.


19.   Zhuang, J. #; Chou, L. -Y. #; Sneed, B. T.; Cao, Y.; Hu, P.; Feng, L.; Tsung, C.-K. ”Surfactant-Mediated Conformal Overgrowth of Core–Shell Metal–Organic Framework Materials with Mismatched Topologies” Small, 2015, 11(41), 5551.


20.   Morabito, J. V. #; Chou, L. -Y. #; Li, Z.; Manna, C. M.; Petroff, C. A.; Kyada, R.; Palomba, J, M.; Byers, J. A.; Tsung, C.-K. ”Molecular Encapsulation beyond the Aperture Size Limit through Dissociative Linker Exchange in Metal−Organic Framework Crystals” J. Am. Chem. Soc. 2014, 136(36), 12540.


21.  Chou, L.-Y.; Liu, R.; He, W.; Geh, N.; Lin, Y.; Hou, E. Y. F.; Wang, D.; Hou, H. J. M. ”Direct oxygen and hydrogen production by photo water splitting using a robust bioinspired manganese-oxo oligomer complex/tungsten oxide catalytic system” Int. J. Hydrogen Energy, 2012, 37(10), 8889.






 











We love ShanghaiTech !!!


2023年11月,课题组团建


2024年11月,课题组团建


2024年9月,教师节快乐



2024年7月,毕业快乐


2024年7月,新加坡会议


2024年6月,谢师宴


2024年6月,广州会议


2024年6月,课题组聚餐


2024年6月,课题组骑行团建


2024年1月,课题组聚餐


2023年11月,课题组聚餐


2023年9月,赴北京理工大学交流


2023年9月,教师节


2023年7月,课题组聚餐


2022年11月,课题组团建


2022年9月,课题组聚餐


2022年9月,教师节


2022年6月,课题组聚餐



2022年6月,学生毕业


2021年9月,课题组聚餐


2021年9月,教师节


2021年9月,迪士尼


2020年12月,课题组聚餐



    


     司晓萌,2022届,博士,毕业去向:上海华力微电子

     奕蓓丽,2022届,博士,毕业去向:上海华力微电子

     赵好杰,2022届,博士,毕业去向:上海联和投资

     吴春辉,2021届,博士,毕业去向:赴美博士后

     康安琪,2021届,硕士,毕业去向:天马微电子

     罗连顺,2020届,硕士,毕业去向:赴美读博

     李海龙,2020届,硕士,毕业去向:西湖大学读博

 













返回原图
/