季泉江

时间:2018-09-04浏览:53401设置


季泉江课题组介绍


Principal Investigator

Quanjiang Ji (季泉江), Professor

Address: 393 Central Huaxia Road, Pudong, Shanghai, China, 200120

Email: quanjiangji@shanghaitech.edu.cn

ORCID: 0000-0002-2321-8462

Biography:

ProfessorShanghaiTech University, 2024.07-present;

Associate ProfessorShanghaiTech University, 2021.01-2024.06;

Assistant Professor, ShanghaiTech University, 2016.02-2020.12;

Postdoc., University of California, Berkeley (Advisor: Prof. Michelle Chang), 2014-2016;

Ph.D., University of Chicago (Advisor: Prof. Chuan He), 2009-2014;

B.S., Nanjing University, 2005-2009.

Awards:

Fok Ying Tung Education Foundation Award, 2024;

Chinese Chemical Society Life Chemistry Award, 2024;

Lingang Laboratory Qiusuo Distinguished Young Scholar, 2022;

Chinese Chemical Society Prize for Young Scientists, 2021;

NSFC Excellent Young Scholar, 2019;

Shanghai Science and Technology Committee Rising-Star Program, 2019;

Young Overseas High-Level Talents Introduction Plan, 2016;

Camille and Henry Dreyfus Postdoctoral Fellowship, 2015; 

Chinese Government Award for Outstanding Self-Financed Students Abroad, 2013; 

The Everett E Gilbert Memorial Prize, 2012.

Teaching:

Instrumental Analysis (2 credits, Fall); Chemical Biology (3 credits, Spring)

Services:

Section Editor, PLoS Genetics, 2022-present;

Editorial Board Member, The CRISPR Journal, 2018-present.

课题组自主开发多项全新的微型CRISPR基因编辑系统,诚聘细胞生物学、生物化学、医学等方向博士后研究人员,共同推进微型基因编辑系统在遗传性疾病和免疫细胞改造等方向的应用!感兴趣研究人员请直接与课题组长联系。

课题组招收生物、化学、材料等方向的研究生,进行CRISPR系统挖掘、化学机制、分子进化等方向研究。


Research

     The understanding and development of CRISPR-Cas systems have revolutionized gene editing methods in biology and medicine. However, the limitations of current CRISPR-Cas technology, including a high off-target rate, a strict PAM requirement, high cell toxicity, and large gene size, restrict its diverse applications. Our goal is to discover, characterize, and engineer new genome-editing systems that possess superior properties compared to current ones. Additionally, we aim to utilize different CRISPR-Cas systems to create rapid and efficient gene editing tools for major human pathogens. This will aid in gaining a fundamental understanding of infection and drug-resistance mechanisms. Lastly, we aspire to develop CRISPR-based antimicrobial strategies to combat infections caused by drug-resistant human pathogens.

CRISPR-Cas characterization and engineering: One potential way to overcome the limitation of current CRISPR-Cas technologies is to discover, characterize, and engineer new CRISPR-Cas systems from other bacteria that may possess rich and distinct biochemical properties for gene editing. We explore and study new CRISPR-Cas systems using multiple approaches, including bioinformatics, biochemical, structural biology, and molecular evolution methods. In addition, we study the fundamental molecular mechanism of current CRISPR-Cas9 systems to evolve PAM-expanded and high-fidelity versions of these enzymes. Ultimately, we aim to develop compact CRISPR-Cas systems with low off-target rate and expanded targeting sites.


Nat Catal (2023) revealed the molecular basis of CRISPR-AsCas12f1 and engineered its activity.


Mol Cell (2023) mined and developed a distinct family of miniature genome editor CRISPR-Cas12n.

            

 

Nat Chem Biol (2021) characterized an ultra-compact CRISPR-AsCas12f1 system for genome editing.


Nat Catal (2020) revealed the first catalytic-state structure of St1Cas9.

Gene editing in major human pathogens: The rapid emergence of drug-resistant human pathogens has posed a severe public health crisis worldwide, emphasizing the desperate need to identify new drug targets and develop new therapeutic strategies. Genetics is the key means to study bacterial physiology. However, traditional genetic manipulation methods in major human pathogens remain as time-consuming and laborious endeavors. We create rapid and highly efficient genetic manipulation tools in multiple major human pathogens, including Staphylococcus aureusPseudomonas aeruginosaKlebsiella pneumoniae, and Mycobacteria, by systematically engineering the powerful CRISPR-Cas genome editing technology and the deaminase-mediated base editing systems.  We utilize protein engineering and synthetic biology approaches to develop genome-wide screening tools in multiple human pathogens. The development of these tools advance fundamental physiology studies as well as novel drug-target explorationThe editing tools have been requested and utilized by numerous research groups worldwide and are available in Addgene (http://www.addgene.org/Quanjiang_Ji/).


Cell Rep (2021) created a CRISPR-Cas12k genome-wide screening tool for Pseudomonas aeruginosa.



Cell Chem Biol (2019) provided a CRISPR-Cas9 genome editing and base edting platform for Acinebacter baumannii.

 


Nucleic Acids Res (2022) studied the MurR-mediated cell wall recycle mechanism in Escherichia coli.

CRISPR-based antimicrobial therapy: We aim to develop CRISPR engineered bacteriophages to counter infections caused by drug-resistant bacterial pathogens using the CRISPR systems developed by ourselves. The engineered bacteriophages are not only able to species-specifically kill target bacterial cells, but also capable of sequence-specifically eliminating certain genes. Therefore, both resistance attenuation and bacterial killing can possibly be achieved using the engineered phages.



Publications

Selected Publications

14. Zhang, H., Ma, J., Wu, Z., Chen, X., Qian, Y., Chen, W., Wang, Z., Zhang, Y., Zhu, H., Huang, X., Ji, Q.* (2024) BacPE: a versatile prime-editing platform in bacteria by inhibiting DNA exonucleases. Nature Communications 15: 825.


13. Wang, Y., Wang, Z., Chen, W., Ren, Z.H., Gao, H., Dai, J., Luo, G.Z., Wu, Z.*Ji, Q.* (2024) A KDPG sensor RccR govens Pseudomonas aeruginosa carbon metabolism and aminoglycoside antibiotic tolerance. Nucleic Acids Research 52: 967-976.


12. Su, M.#, Li, F.#, Wang, Y.#, Gao, Y., Lan, W., Shao, Z., Zhu, C., Tang, N., Gan, J., Wu, Z.*Ji, Q.* (2024) Molecular basis and engineering of miniature Cas12f with C-rich PAM specificity. Nature Chemical Biology 20: 180-189.


11. Wu, Z.#, Liu, D.#, Pan, D.#, Yu, H., Shi, J., Ma, J., Fu, W., Wang, Z., Zheng, Z., Qu, Y., Li, F., Chen, W., Huang, X., Shen, H.*Ji, Q.* (2023) Structure and engineering of miniature Acidibacillus sulfuroxidans Cas12f1. Nature Catalysis 6:695-709.


10. Chen, W.#, Ma, J.#, Wu, Z., Wang, Z., Zhang, H., Fu, W., Pan, D., Shi, J., Ji, Q.* (2023) Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. Molecular Cell 83: 2768-2780.


9. Wang, Yuj., Wang, Ya., Pan, D., Yu, H., Zhang, Y., Chen, W., Li, F., Wu, Z.*Ji, Q.* (2022) Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Reports 40: 111418.


8. Zhang, Y.#, Chen, W.#, Liu, D.#, Liu, Y., Wu, Z., Li, J., Zhang, S.Y.*Ji, Q.* (2022) Molecular basis for cell-wall recycling regulation by transcriptional repressor MurR in Escherichia coliNucleic Acids Research 50: 5948-5960.


7. Wu, Z., Zhang, Y., Yu, H., Pan, D., Wang, Yuj., Wang, Ya., Li, F., Liu, C., Nan, H., Chen, W., Ji, Q.* (2021) Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nature Chemical Biology 17: 1132-1138.


6. Chen, W.#, Ren, Z.#, Tang, N., Chai, G., Zhang, H., Zhang, Y., Ma, J., Wu, Z., Shen, X., Huang, X., Luo, G.Z.*Ji, Q.* (2021) Targeted genetic screening in bacteria with a Cas12k-guided transposase. Cell Reports 36: 109635.


5. Zhang, Y., Zhang, H., Xu, X., Wang, Yuj, Chen, W., Wang, Ya., Wu, Z., Tang, N., Wang, Yu, Zhao, S., Gan, J.*, Ji, Q.* (2020) Catalytic-state structure and engineering of Streptococcus thermophilus Cas9. Nature Catalysis 3: 813-823.


4. Chen, W., Zhang, H., Zhang, Y., Wang, Y., Gan, J.*, Ji, Q.* (2019) Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology 17: e3000496.


3. Wang, Y., Wang, Z., Chen, Y., Hua, X., Yu, Y., Ji, Q.* (2019) A highly efficient CRISPR-Cas9-based genome engineering platform in Acinetobacter baumannii toward the understanding of H2O2-sensing mechanism of OxyR. Cell Chemical Biology 26: 1732-42. 


2. Song, L., Zhang, Y., Chen, W., Gu, T., Zhang, S.Y., Ji, Q.* (2018) Mechanistic insights into staphylopine-mediated metal acquisition.  PNAS 115: 3942-7.


1. Chen, W., Zhang, Y., Yeo, W.S., Bae, T., Ji, Q.* (2017) Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system. JACS 139: 3790-5.


Research Articles and Reviews (Full List)

2024

43. Wang, Ya. Wang, Yu., Tang, N., Wang, Z., Pan, D., Ji, Q.* (2024) Characterization and engineering of a novel miniature Eubacterium siraeum CRISPR-Cas12f system. ACS Synthetic Biology doi: 10.1021/acssynbio.4c00154.


42. Tang, N., Ji, Q.* (2024) Miniature CRISPR-Cas12 systems: mechanisms, engineering, and genome editing applications. ACS Chemical Biology doi: 10.1021/acschembio.4c00247.


41. Ma T., Xie N., Gao Y., Fu J., Tan C.E., Yang Q.E., Wang S., Shen Z., Ji Q., Parkhill J., Wu C., Wang Y.*, Walsh T.R.*, Shen J.* (2024) VirBR, a transcription regulator, promotes IncX3 plasmid transmission, and persistence of blaNDM-5 in zoonotic bacteria. Nature Communications 15: 5498.


40. Zhang, H., Ma, J., Wu, Z., Chen, X., Qian, Y., Chen, W., Wang, Z., Zhang, Y., Zhu, H., Huang, X., Ji, Q.* (2024) BacPE: a versatile prime-editing platform in bacteria by inhibiting DNA exonucleases. Nature Communications 15: 825.


39. Wang, Y., Wang, Z., Chen, W., Ren, Z.H., Gao, H., Dai, J., Luo, G.Z., Wu, Z.*Ji, Q.* (2024) A KDPG sensor RccR govens Pseudomonas aeruginosa carbon metabolism and aminoglycoside antibiotic tolerance. Nucleic Acids Research 52: 967-976.


38. Tang, N., Wu, Z., Gao, Y., Chen, W., Wang, Z., Su, M., Ji, Q.* (2024) Molecular basis and genome editing applications of a compact Eubacterium ventriosum CRISPR-Cas9 system. ACS Synthetic Biology 13: 269-281.


37. Su, M.#, Li, F.#, Wang, Y.#, Gao, Y., Lan, W., Shao, Z., Zhu, C., Tang, N., Gan, J., Wu, Z.*Ji, Q.* (2024) Molecular basis and engineering of miniature Cas12f with C-rich PAM specificity. Nature Chemical Biology 20: 180-189.


2023

36. Wu, Z.#, Liu, D.#, Pan, D.#, Yu, H., Shi, J., Ma, J., Fu, W., Wang, Z., Zheng, Z., Qu, Y., Li, F., Chen, W., Huang, X., Shen, H.*Ji, Q.* (2023) Structure and engineering of miniature Acidibacillus sulfuroxidans Cas12f1. Nature Catalysis 6:695-709.


35. Chen, W.#, Ma, J.#, Wu, Z., Wang, Z., Zhang, H., Fu, W., Pan, D., Shi, J., Ji, Q.* (2023) Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. Molecular Cell 83: 2768-2780.


34. GründlingA.*, Ji, Q.* (2023) Introduction of a CRISPR-nCas9 gene-targeting plasmid into Staphylococcus aureus for gene disruption. Cold Spring Harbor Protocols doi: 10.1101/pdb.prot107925.


33. GründlingA.*, Ji, Q.* (2023) Identification of editable sites, spacer oligonucletide design, generation of the gene-targeting CRISPR-nCas9 plasmid for gene disruption in Staphylococcus aureus using the CRISPR-nCas9 and cytidine deaminase system. Cold Spring Harbor Protocols doi: 10.1101/pdb.prot107924.


32. Gründling, A.*, Ji, Q.*Salipante, S.J.* (2023) Using CRISPR-Cas9-based methods for genome editing in Staphylococcus aureusCold Spring Harbor Protocols doi: 10.1101/pdb.top107919.


31. Li, X., Zhang, G., Huang, S., Liu, Y., Tang, J., Zhong, M., Wang, X., Sun, W., Yao, Y., Ji, Q., Wang, X., Liu, J., Zhu, S., Huang, X.* (2023) Development of a versatile nuclease prime editor with upgraded precision. Nature Communications 14: 305.


30. Wang, Z.#, Zhang, Y.#, Chen, C., Zhu, R., Jiang, J., Weng, T.C., Ji, Q.*, Huang, Y.*, Fang, C.*, Liu, W.* (2023) Mapping the complete photocycle that powers a large stokes shift red fluorescent protein. Angew Chem 62: e202212209.


2022

29. Wang, Yuj., Wang, Ya., Pan, D., Yu, H., Zhang, Y., Chen, W., Li, F., Wu, Z.*Ji, Q.* (2022) Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Reports 40: 111418.


28. Wang, Z., Wang, Yu, Wang, Yuj., Chen, W.Ji, Q.* (2022) CRISPR/Cpf1-mediated multiplex and large-fragment gene editing in Staphylococcus aureus. ACS Synthetic Biology 11: 3049-3057.


27. Zhang, Y.#, Chen, W.#, Liu, D.#, Liu, Y., Wu, Z., Li, J., Zhang, S.Y.*Ji, Q.* (2022) Molecular basis for cell-wall recycling regulation by transcriptional repressor MurR in Escherichia coliNucleic Acids Research 50: 5948-5960.


26. Zhang, H., Zhang, Y., Wang, W.X., Chen, W.Z., Zhang, X., Huang, X., Chen, W.*, Ji, Q.* (2022) PAM-expanded Streptococcus thermophilus Cas9 C-to-T and C-to-G base editors for programmable base editing in mycobacteria. Engineering 15: 67-77.


25. Huang, X., Li, X., An, H., Wang, J., Ding, M., Wang, L., Li, L., Ji, Q., Qu, F., Wang, H., Xu, Y., Lu, X., He, Y., Zhang, J.R.* (2022) Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathogens 18: e1010693.


24. Zhang, G.#, Liu, Y.#, Huang S.#, Qu, S., Cheng, D., Yao, Y., Ji, Q., Wang, X.*, Huang, X.*, Liu, J.* (2022) Enhancement of prime editing via xrRNA motif-joined pegRNA. Nature Communications 13: 1856.


23. Li, X., Wang, X., Sun, W., Huang, S., Zhong, M., Yao, Y., Ji, Q., Huang, X.* (2022) Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes. Journal of Molecular Cell Biology 14: mjac022.


22. Yu, L., Cao, Q., Chen, W., Yang, N., Yang, C.G., Ji, Q., Wu, M., Bae, T. Lan, L.* (2022) A novel copper-sensing two-component system for inducing Dsb gene expression in bacteria. Science Bulletin 67: 198-212. 


2021

21. Wu, Z., Zhang, Y., Yu, H., Pan, D., Wang, Yuj., Wang, Ya., Li, F., Liu, C., Nan, H., Chen, W., Ji, Q.* (2021) Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nature Chemical Biology 17: 1132-1138.


20. Chen, W.#, Ren, Z.#, Tang, N., Chai, G., Zhang, H., Zhang, Y., Ma, J., Wu, Z., Shen, X., Huang, X., Luo, G.Z.*Ji, Q.* (2021) Targeted genetic screening in bacteria with a Cas12k-guided transposase. Cell Reports 36: 109635.


19. Liu, Y., Chen, Y., Dang, L., Liu, Y., Huang, S., Wu, S., Ma, P., Jiang, H., Li, Y., Pan, Y., Wei, Y., Ma, X., Liu, M., Ji, Q., Chi, T., Huang, X.*, Wang, X.*, Zhou, F.* (2021) EasyCatch, a conventient, sensitive and specific CRISPR detection system for cancer gene mutations. Molecular Cancer 20: 157. 


2020

18. Zhang, Y., Zhang, H., Xu, X., Wang, Yuj, Chen, W., Wang, Ya., Wu, Z., Tang, N., Wang, Yu, Zhao, S., Gan, J.*, Ji, Q.* (2020) Catalytic-state structure and engineering of Streptococcus thermophilus Cas9. Nature Catalysis 3: 813-823.


17. Yu, H.#, Wu, Z.#, Chen, X., Ji, Q.*, Tao, S.* (2020) CRISPR-CBEI: a designing and analyzing tool kit for cytosine base editor-mediated gene inactivation. mSystems 5: e00350-20.


16. Wang, Y.*, Wang, Z., Ji, Q.* (2020) CRISPR-Cas9-based genome editing and cytidine base editing in Acinetobacter baumanniiSTAR Protocols DOI: 10.1016/j.xpro.2020.100025.


15. Pi, Y., Chen, W., Ji, Q.* (2020) Structural basis of Staphylococcus aureus surface protein SdrC. Biochemistry 59: 1465-1469.


14. Zhang, Y., Zhang, H., Wang, Z., Wu, Z., Wang, Y., Tang, N., Xu, X., Zhao, S., Chen, W.*, Ji, Q.* (2020) Programmable adenine deamination in bacteria using a Cas9-adenine-deaminase fusion. Chemical Science 11: 1657-1664.


13. Wu, Z., Wang, Y., Zhang, Y., Chen, W., Wang, Y., Ji, Q.* (2020) Strategies for developing CRISPR-based gene editing methods in bacteria. Small Methods 4: 1900560.


2019

12. Chen, W., Zhang, H., Zhang, Y., Wang, Y., Gan, J.*, Ji, Q.* (2019) Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology 17: e3000496.


11. Wang, Y., Wang, Z., Chen, Y., Hua, X., Yu, Y., Ji, Q.* (2019) A highly efficient CRISPR-Cas9-based genome engineering platform in Acinetobacter baumannii toward the understanding of H2O2-sensing mechanism of OxyR. Cell Chemical Biology 26: 1732-42. 


10. Zhang, Y., Sun, X., Qian, Y., Yi, H., Song, K., Zhu, H., Zonta, F., Chen, W., Ji, Q., Miersch, S, Sidhu, S.S.*, Wu, D.* (2019) A potent anti-SpuE antibodyallosterically inhibits type III secretion system and attenuates virulence of Pseudomonas aeruginosa. Journal of Molecular Biology 431:4882-4896.


9. Fu, T., Liu, L., Yang, Q.L., Wang, Y., Xu, P., Zhang, L., Liu, S., Dai, Q., Ji, Q., Xu, G.L., He, C., Luo, C.*, Zhang, L.* (2019) Thymine DNA glycosylase recognizes the geometry alteration of minor grooves induced by 5-formylcytosine and 5-carboxylcytosine. Chemical Science 10: 7407-17.


8. He, T., Wang, R., Liu, D., Walsh, T.R., Zhang, R., Lv, Y., Ke, Y., Ji, Q., Wei, R., Liu, Z., Shen, Y., Wang, G., Sun, L., Lei, L., Lv, Z., Li, Y., Pang, M., Wang, L., Sun, Q., Fu, Y., Song, H., Hao, Y., Shen, Z., Wang, S., Chen, G., Wu, C., Shen, J., Wang, Y. (2019) Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nature Microbiology 4: 1450-6.


7. Sun, Q.#, Wang, Y.#, Dong, N., Shen, L., Zhou, H., Hu, Y., Gu, D., Chen, S., Zhang, R.*, Ji, Q.* (2019) Application of CRISPR/Cas9-based genome editing in studying the mechanism of pandrug resistance in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy 63: e00113-19.


2018

6. Wang, Y., Wang, S., Chen, W., Song, L., Shen, Z., Yu, F., Li, M., Ji, Q.*(2018) Precise and efficient genome editing in Klebsiella pneumoniae using CRISPR-Cas9 and CRISPR-assisted cytidine deaminase. Applied and Environmental Microbiology 84: e01834-18.


5. Chen, W., Zhang, Y., Zhang, Y., Pi, Y., Gu, T., Song, L., Wang, Y., Ji, Q.* (2018) CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. iScience 6: 222-31.


4. Wei, W.#, Zhang, Y.#, Gao, R., Li, J., Xu, Y., Wang, S., Ji, Q.*, Feng, Y.* (2018) Crystal structure and acetylation of BioQ suggests a novel regulatory switch for biotin biosynthesis in Mycobacterium smegmatis. Molecular Microbiology 109: 642-62.


3. Song, L., Zhang, Y., Chen, W., Gu, T., Zhang, S.Y., Ji, Q.* (2018) Mechanistic insights into staphylopine-mediated metal acquisition.  PNAS 115: 3942-7.


2. Gu, T.#, Zhao, S.#, Pi, Y., Chen, W., Chen, C., Liu, Q., Li, M., Han, D.*, Ji, Q.* (2018) Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase. Chemical Science 9: 3248-53.


2017

1. Chen, W., Zhang, Y., Yeo, W.S., Bae, T., Ji, Q.* (2017) Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system. JACS 139: 3790-5.


Book Chapters

4. Chen, W. & Ji, Q. (2024) CRISPR/Cas9-based genome editing of Pseudomonas aeruginosaMethods in Molecular Biology 2721:3-12.


3. Wu, Z. & Ji, Q. (2024) Bacterial CRISPR systems and applications. Molecular Medical Microbiology 633-652.


2. Wang, Z., Wang, Y. & Ji, Q. (2022) Genome editing in Klebsiella pneumoniae using CRISPR/Cas9 technology. Methods in Molecular Biology 2079:105-117.


1. Chen, W. & Ji, Q. (2020) Genetic manipulation of MRSA using CRISPR/Cas9 technology. Methods in Molecular Biology 2069:113-124.



Patents

8. 季泉江、王宇。一种用于鲍曼不动杆菌胞嘧啶碱基编辑质粒及其应用。申请号:201910644444.1
7. 季泉江、王宇。双质粒系统及其应用。申请号:201910644324.1
6. 季泉江、王宇。一种用于肺炎克雷伯菌基因编辑的双质粒系统。申请号:201811039504.9
5. 季泉江、王宇。一种肺炎克雷伯菌基因编辑的表达载体。申请号:201811039489.8
4. 季泉江、陈未中。一种pnCasPA-BEC质粒及其应用。申请号:201810767194.6
3. 季泉江、陈未中。一种pCasPA/pACRISPR双质粒系统及其应用。申请号:201810766759.9
2. 季泉江、顾桐年。一种pnCasSA-BEC质粒及其应用。申请号:201810169946.9
1. 季泉江、陈未中。一种pCasSA质粒及其应用。授权号:ZL201611255504.3


Group Activities


Tianmu Lake, 2019_10


Dishui Lake, 2020_10


Anji, 2021_10


Disneyland, 2023_12


Changxing Island, 2024_11



Current Group Members


































































Zhaowei Wu(吴兆韡)                         

Associate Research Fellow

Associate Research Fellow, ShanghaiTech University, 2024-Current;

Assistant Research Fellow, ShanghaiTech University, 2021-2024;

Postdoc., ShanghaiTech University, 2018-2021;

Ph.D., Northwest A&F University, 2014-2018;

B.S., Northwest A&F University, 2010-2014.

Email: wuzw1@shanghaitech.edu.cn


Zhipeng Wang(王志鹏

Postdoc

Postdoc., ShanghaiTech University, 2023-current;

Ph.D, ShanghaiTech University, 2018-2023;

B.S., Zhengzhou University, 2014-2018.

Email: wangzhp@shanghaitech.edu.cn


Yujue Wang(王玉珏

Postdoc

Postdoc., ShanghaiTech University, 2023-current;

Ph.D, ShanghaiTech University, 2018-2023;

B.S., Shandong University, 2014-2018.

Email: wangyj6@shanghaitech.edu.cn


Hongyuan Zhang(张洪源

Postdoc

Postdoc., ShanghaiTech University, 2023-current;

Ph.D, ShanghaiTech University, 2018-2023;

B.S., Shandong University, 2014-2018.

Email: zhanghy2@shanghaitech.edu.cn



Na Tang(汤娜

Postdoc

Postdoc., ShanghaiTech University, 2024-Current;

Graduate student, ShanghaiTech University, 2019-2024;

B.S., China Pharmaceutical University, 2015-2019.

Email: tangna@shanghaitech.edu.cn


Yannan Wang(王艳男

Graduate student

Graduate student, ShanghaiTech University, 2019-Current;

B.S., Wuhan University of Technology, 2015-2019.

Email: wangyn5@shanghaitech.edu.cn


Deng Pan(潘登

Graduate student

Graduate student, ShanghaiTech University, 2020-Current;

B.S., Zhengzhou University, 2016-2020.

Email: pandeng@shanghaitech.edu.cn


Jiacheng Ma(马佳诚

Graduate student

Graduate student, ShanghaiTech University, 2020-Current;

B.S., Northwest University, 2016-2020.

Email: pandeng@shanghaitech.edu.cn


Jin Shi (史进)

Graduate student

Graduate student, ShanghaiTech University, 2021-Current;

B.S., China Pharmaceutical University, 2017-2021.

Email: shijin@shanghaitech.edu.cn


Mengjiao Su苏梦娇

Graduate student

Graduate student, ShanghaiTech University, 2021-Current;

B.S., Chengdu Medical College, 2017-2021.

Email: sumj@shanghaitech.edu.cn


Wenhan Fu傅文翰

Graduate student  

Graduate student, ShanghaiTech University, 2021-Current;

B.S., ShanghaiTech University, 2017-2021.

Email: fuwh@shanghaitech.edu.cn


Hui Gao(高慧

Graduate student  

Graduate student, ShanghaiTech University, 2021-Current;

B.S., Shanghai Normal University, 2017-2021.

Email: gaohui@shanghaitech.edu.cn


Jiani Dai(戴佳妮

Graduate student   

Graduate student, ShanghaiTech University, 2022-Current;

B.S., Hunan Agricultural University, 2018-2022.

Email: Daijn2022@shanghaitech.edu.cn


Ruoyun Bai(白若云

Graduate student   

Graduate student, ShanghaiTech University, 2022-Current;

B.S., China Agricultural University, 2018-2022.

Email: Bairy12022@shanghaitech.edu.cn


Xiaoyang Chen(陈潇阳

Graduate student   

Graduate student, ShanghaiTech University, 2022-Current;

B.S., Nanjing University, 2018-2022.

Email: Chenxy2022@shanghaitech.edu.cn


Xin Nai(奈鑫

Graduate student   

Graduate student, ShanghaiTech University, 2023-Current;

B.S., China Pharmaceutical University, 2019-2023.

Email: naixin2023@shanghaitech.edu.cn 


Xiaoyu Zhang(张晓禹

Graduate student   

Graduate student, ShanghaiTech University, 2023-Current;

B.S., ShanghaiTech University, 2019-2023.

Email: zhangxy22023@shanghaitech.edu.cn



Yi Jin(金逸

Graduate student   

Graduate student, ShanghaiTech University, 2023-Current;

B.S., Shandong University, 2019-2023.

Email: jinyi2023@shanghaitech.edu.cn

 Alumni

 


Liqiang Song(宋立强)

Postdoc   2016-2018

Current: UT Health Science Center (Postdoc)


Yu Wang(王宇)

Postdoc   2017-2019

Current: Jiangxi Agricultural University (Associate Professor)


Yani Zhao(赵雅妮)

B.S.   2015-2019

Current: UNC at Chapel Hill (Ph.D. candidate)


Tongnian Gu (顾桐年)

Ph.D.   2015-2020
Current: Institute of Biophysics, CAS (Postdoc)


Yishuang Pi (皮义双)

M.S.   2017-2020
Current: Viva Biotech (Research Scientist)


Chang Liu (刘畅)

B.S.   2017-2021
Current: University of California, Berkeley (Ph.D. candidate)


Yifei Zhang(张翼飞)

Ph.D.   2016-2021


Weizhong Chen(陈未中)

Postdoc, Assistant, Associate Professor 2016-2022

Current: Ningbo University (Associate Professor)


Ya Zhang(张雅)

Ph.D. 2017-2022

Current: Rice University (Postdoc)


Fan Li(李帆)

Postdoc 2020-2022

Current: Jinling Institute of Technology (Assistant Professor)


返回原图
/