刘伟民

时间:2022-05-12浏览:17734设置



刘伟民课题组介绍



课题组长

刘伟民:研究员/博导/Tenure Track Assistant Professor

通讯地址:华夏中路393号物质学院6号楼302C

电子邮件:liuwmshanghaitech.edu.cn 

  2001年,毕业西北大学物理系,获光学硕士学位(导师:侯洵 院士);                                                                                                          

  2006年毕业于复旦大学物理系,获光学专业博士学位(导师:钱士雄教授);                                                                                                        

  2006年8月至2009年4月在新加坡国立大学从事博士后研究;                                                                                                        

  2009年5月至2016年5月先后在美国南卡罗来纳大学、Emory大学和俄勒冈州立大学从事博士后研究工作;                                                                                                        

  2016年6月加入上海科技大学物质科学与技术学院,Tenure Track Assistant Professor。

                                         

教授课程:

   《激光技术原理》——本科生专业选修课,3学分

   《飞秒激光与超快光谱技术》——本研一体专业选修课,2学分

指导本科生毕业设计:

   《紫外光致氧化石墨烯还原反应的超快动力学研究》——赵智渊,2022届本科毕业生

   《标准MAPbBr3钙钛矿晶体的瞬态吸收研究》——李正阳,2022届本科毕业生

   《飞秒受激拉曼激发荧光光谱》——彭勃,2021届本科毕业生

   《偶氮苯衍生物的激发态异构化动力学过程的研究》——林依澜,2021届本科毕业生


研究介绍


                                             

   研究团队配备了千级洁净度的超净室,超快测试平台包括瞬态吸收光谱仪、时间分辨科尔门荧光光谱仪、紫外可见激发-中红外探测瞬态吸收以及飞秒受激拉曼光谱仪等研究方向是利用飞秒受激拉曼光谱技术技术结合其他传统的超快光谱技术研究飞秒、皮秒时间尺度内的分子激发态微观结构动力学,包括激发态质子传递、能量传递、电子传递以及分子异构化等一系列超快化学和物理过程。

主要的研究内容包括

   1)红色荧光蛋白的激发态结构动力学过程;

   2)光合作用体系在能量传递过程中的激发态结构动力学;

   3)胆红素、视紫红质等的光致异构化过程;


  课题组长期诚聘助理研究员、博士后、硕博连读研究生,待遇优厚,工作环境优越,欢迎有志于在超快光谱学领域开展最前沿研究的学生学者加入!有意者请直接与课题组长邮件联系。


仪器介绍——飞秒激光光源

  由于超快光谱实验需要飞秒(fs)至皮秒(ps)尺度(10-15 s ~ 10-12 s)的时间分辨率,因此,对激光光源的脉冲宽度要求极为严格。实验室拥有输出最高能量为7 mJ,脉冲宽度为35 fs,脉冲重复频率为1 kHz,中心波长为800 nm的飞秒激光光源系统。可以满足当前的实验需求。

 

飞秒激光光源系统

仪器介绍——光参量放大系统(Optical Parametric Amplification, OPA)

  光参量放大器主要用于将激光器输出的单一频率的光,通过光学参量放大技术调谐为实验所需的特定波长。实验室拥有两套光参量放大器(OPA):飞秒OPA主要用于将飞光源产生的中心波长为800 nm 的飞秒激光调谐为波长在240 nm ~ 17000 nm范围内可任意调谐的飞秒激光脉冲,并用作超快光谱实验中的激发光;而皮秒OPA产生480 nm ~ 2500 nm的窄带皮秒激光脉冲,用做受激拉曼实验中所需的拉曼泵浦光。

皮秒秒光参量放大器——ps-OPA

飞秒光参量放大器——fs-OPA

                                                                                                                                               
仪器介绍——稳态吸收&稳态荧光光谱仪

 稳态吸收光谱仪

   稳态荧光光谱仪   

  稳态吸收光谱仪与稳态荧光光谱仪是实验中常用的基础设备。本实验室配备了759S紫外可见分光光度计,以氘灯和钨灯作为光源,可测量的波长范围为190nm-365nm(氘灯)、365nm-1100nm(钨灯),吸光度的量程为-0.3到4,波长最大误差为0.5nm。F97Pro硒荧光分光光度计激发波长范围200 nm-900 nm,发射波长范围200 nm-900 nm,波长最大允许误差1.0nm。

                                                                                                                                               
仪器介绍——中红外瞬态吸收

                                                                                                                                                               

中红外瞬态吸收装置


  中红外瞬态吸收装置利用FPAS碲镉汞探测器将瞬态吸收光谱的探测范围扩展到3000nm以上的中红外波段。此波段振动态光谱信息丰富,因此中红外瞬态吸收技术可以作为激发态动力学探测手段的有力补充。

                                         

  仪器介绍——飞秒瞬态吸收


   飞秒瞬态吸收系统
   

  瞬态吸收光谱是一种十分成熟的泵浦-探测技术。实验中主要用到两束激光脉冲:激发光和探测光。通过探测光探测样品激发前后吸光度的变化,便可以得到完全由于光激发导致的吸收度变化组分,即瞬态吸收光谱。通过调整激发光与探测光之间的光程差,可以改变两者到达样品的时间差,并最终得到整个时间窗口内上的分子电子态弛豫过程。    

  目前前实验室拥有超快系统公司(Ultrafast Systems Inc.)的 Helios Fire 飞秒泵浦探测瞬态吸收光谱仪。时间窗口长达8 ns,时间分辨率小于100 fs,探测范围约为320 nm ~ 1000 nm。

                                                                           

  仪器介绍——基于科尔门的时间分辨荧光光谱


   基于克尔门的时间分辨荧光光谱

  光克尔效应是指光脉冲作用使介质产生折射率各向异性或双折射效应。实验中,光克尔介质被置于一对正交的偏振片中。强泵浦脉冲的作用使得光克尔介质产生双折射现象,使得在泵浦脉冲的作用时间窗口内,荧光的偏振方向发生偏转,得以通过正交的偏振片而被探测到。通过调整激发光和科尔泵浦光的之间的延迟,实现对激发后荧光动力学全过程的探测。

                                         
仪器介绍——飞秒受激拉曼技术

飞秒受激拉曼系统

  飞秒受激拉曼光谱(Femtosecond Stimulated Raman  Spectroscopy, FSRS)是一种新兴的时间分辨振动光谱技术,在实验上使用了三束光作用于待测样品。如图所示,使用脉冲激发光激发样品,使样品吸收激发光光子能量跃迁至激发态。然后再使用频域上超窄带的一束拉曼泵浦光(Raman Pump, RP)脉冲和一束频域上超连续且时域脉宽是飞秒量级的拉曼探测光(Raman Probe, PR)脉冲相结合,产生受激拉曼信号。其中拉曼泵浦光脉冲的波长连续可调,当其光子能量满足激发态向更高能级跃迁的能量差时,可以共振激发拉曼信号。共振受激拉曼的信号强度远远强于非共振情况下的拉曼信号强度。通过调整激发光(Actinic Pump, AP)与另外两束光之间的延时T,可以得到不同时刻的样品拉曼信号。通过拉曼信号的弛豫变化,可以解析出样品所发生的结构变化,从而清晰的解构出其结构动力学。

                                                                           
仪器介绍——瞬态吸收显微镜
 

瞬态吸收显微系统

  瞬态吸收显微镜在已经成熟运用的瞬态吸收技术的基础上,提供了具体的空间信息,并从空间各向异性中解释材料的微观局部激发态动力学特征。首先在实验光路中产生飞秒激发光和探测光,随后将其引入显微镜系统中,通过物镜将其聚焦在样品处进行探测,并在整个视场中实现超快的时间分辨(飞秒)和空间分辨(1微米)。该技术为二维材料、纳米材料等在紫外、可见光以及红外波段的激发态光生载流子的超快动力学以及材料表面的载流子传输、激子迁移、声子动力学等超快过程提供了有力的观测手段。


                                                                           
仪器介绍——荧光上转换
 

荧光上转换

                                                                           

             


组内动态



课题组合影

2022 元旦聚餐


  2022毕业生合影

 2022毕业生合影






         



发表文章


2024                                                    

  1. Wei, X.; Wang, Z.H.; Wang, Z.Y.; Lu, Y.; Ji, Q*.; Liu, W*., Unveiling Spatiotemporal Diffusion of Hot Carriers Influenced by Spatial Nonuniform Hot Phonon Bottleneck Effect in Monolayer MoS2. Nano Lett. 2024 

     

  2. J. XieW. ZhouH. LiZ. WangJ. JiangY. ZhangX. ShenZ. NingW. LiuVisualizing Carrier Diffusion in Cs-Doping FAPbI3 Perovskite Thin Films Using Transient Absorption MicroscopyAdv. Optical Mater. 202412, 2303004. 

  3. Peng, B., Wang, Z., Jiang, J., Huang, Y., & Liu, W.  Investigation of ultrafast intermediate states during singlet fission in lycopene H-aggregate using femtosecond stimulated Raman spectroscopy. The Journal of Chemical Physics. 2024; 160 (19): 194304.

     

  4. Wang, C., Chen, Y., Xiong, R., Sun, K., Lin, X., Wang, W., Suo, P., Liu, W., & Ma, G. Weakening of the Many-Body Interactions Induced by Charge Transfer in Gr/WS2 Heterostructures.The Journal of Physical Chemistry C.2024 128 (22), 9209-9216

2023                                                    

  1. Wang, Z.; Zhang, Y.; Chen, C.; Zhu, R.; Jiang, J.; Weng, T.; Ji, Q*.; Huang, Y*.; Fang, C*.; Liu, W*., Mapping the Complete Photocycle that Powers a Large Stokes Shift Red Fluorescent Protein. Angewandte Chemie International Edition. 20233,135,   e2022 

  2. An, Q.; Xing, Y.; Pu, R.; Jia, M.; Chen, Y.; Hu, A.; Zhang, S.; Yu, N.; Du, J.; Zhang, Y.; Chen, J*.; Liu, W*.; Hong, X*.; Zuo, Z*.; Identification of alkoxy radicals as the hydrogen atom transfer agents in the Ce-catalyzed C–H functionalization. Journal of the American Chemical Society. 2023,145, 1, 359–376

  3. Pu, R.;  Wang, Z.;  Zhu, R.;  Jiang, J.;  Weng, T.-C.;  Huang, Y*.; Liu, W*., Investigation of Ultrafast Configurational Photoisomerization of Bilirubin Using Femtosecond Stimulated Raman Spectroscopy. The Journal of Physical Chemistry Letters 2023, 14 (3), 809-816.

  4. Zhao, Z.;  Pu, R.;  Wang, Z.;  Jiang, J.; Liu, W*., Identification of Ultraviolet Photoinduced Presolvated Electrons in Water as the Reducing Agent in the Photoreduction of Graphene Oxide. The Journal of Physical Chemistry C 2023.

  5. Lin, Y.; Wei, X.; Fang, D.; Wang, Z.; Huang, Y.; Li, T.; Liu, W. Investigation of Ultrafast Photoisomerization Dynamics of Azobenzene Derivative (E)-1-Phenyl-2-((triisopropylsilyl)ethynyl)diazene. Chinese Journal of Chemical Physics , 2023, 36(6): 664-670.

2022                                                    

  1. Suo, P.;  Yan, S.;  Pu, R.;  Zhang, W.;  Li, D.;  Chen, J.;  Fu, J.;  Lin, X.;  Miao, F.;  liang, S.;  Liu, W*.; Ma, G.-H*., Ultrafast photocarrier and coherent phonon dynamics in type-Ⅱ Dirac semimetal PtTe2 thin films probed by optical spectroscopy. Photonics Research 2022.

  2. Wang, Z.; Jiang, J.; Huang, Y*.; Liu W*., Tracking Twisted Intramolecular Charge Transfer and Isomerization Dynamics in 9- (2,2- Dicyanovinyl) Julolidine Using Femtosecond Stimulated Raman Spectroscopy. Chinese Journal of Chemical Physics 2022. 

  3. Li, J.; Pu, R.; He, X.; Chen, Q.; Liu, S.; Liu, W*.; Li, J*., A Precipitation-Enhanced Emission (PEE) Strategy for Increasing the Brightness and Reducing the Liver Retention of NIR-II Fluorophores. Small 2022, 2204153.


2021                                                    

  1. Wei, J.;  Wu, Y.;  Pu, R.;  Shi, L.;  Jiang, J.;  Du, J.;  Guo, Z*.;  Huang, Y*.; Liu, W*., Tracking Ultrafast Structural Dynamics in a Dual-Emission Anti-Kasha-Active Fluorophore Using Femtosecond Stimulated Raman Spectroscopy. The Journal of Physical Chemistry Letters 2021 , 12, 4466-4473.

     


  2. Xu, W., Wei, L., Wang, Z., Zhu, R., Jiang, J., Liu, H., Du, J., Weng, T. C., Zhang, Y. B*., Huang, Y*., & Liu, W*. (2021). Tracking Ultrafast Fluorescence Switch-On and Color-Tuned Dynamics in Acceptor-Donor-Acceptor Chromophore. The Journal of Physical Chemistry. B, 125(38), 10796–10804.


  3. Zhang, W.;  Xu, W.;  Zhang, G.;  Kong, J.;  Niu, X.;  Chan, J. M*.;  Liu, W*.; Xia, A*.,  Direct Tracking Excited-State Intramolecular Charge Redistribution of Acceptor–Donor–Acceptor Molecule by Means of Femtosecond Stimulated Raman Spectroscopy. The Journal of Physical Chemistry B 2021. 

  4. Ma, Q. S., Zhang, W.;  Wang, C.;  Pu, R.;  Ju, C.-W.;  Lin, X.;  Zhang, Z*.;  Liu, W*.; Li, R., Hot Carrier Transfer in a Graphene/PtSe2 Heterostructure Tuned by a Substrate-Introduced Effective Electric Field. The Journal of Physical Chemistry C 2021.

  5. Yan, X.;  Pu, R.;  Xie, R.;  Zhang, B.;  Shi, Y.;  Liu, W*.;  Ma, G*.; Yang, N*., Design and fabrication of Bi2O3/BiFeO3 heterojunction film with improved photoelectrochemical performance. Applied Surface Science 2021,552, 149442.

  6. Wang T, Wang S*, Liu Z, He Z, Yu P, Zhao M, Zhang H, Lu L, Wang Z, Wang Z, Zhang W*, Fan Y, Sun C, Zhao D, Liu W, Bünzli JG, Zhang F*. A hybrid erbium(III)-bacteriochlorin near-infrared probe for multiplexed biomedical imaging. Nat Mater. 2021 Nov;20(11):1571-1578.

  7. Zhang, P.;  Yin, Y.;  Wang, Z.;  Yu, C.;  Zhu, Y.;  Yan, D.;  Liu, W.; Mai, Y*.Porphyrin-Based Conjugated Microporous Polymer Tubes: Template-Free Synthesis and A Photocatalyst for Visible-Light-Driven Thiocyanation of Anilines., Macromolecules 2021 54 (7), 3543-3553

  8. Wang, Z.;  Xu, W.;  Wei, J.;  Jiang, J.;  Du, J.;  Li, B*.; Liu, W*., Investigation of multiphoton pumped stimulated emission in semiconductor material using femtosecond two pulses induced stimulated emission technique. Optics Communications 2021,479, 126446.

  9. Liu Z, Hu M, Du J*, Shi T, Wang Z, Zhang Z, Hu Z, Zhan Z, Chen K, Liu W, Tang J, Zhang H*, Leng Y*, Li R. Subwavelength-Polarized Quasi-Two-Dimensional Perovskite Single-Mode Nanolaser. ACS Nano. 2021 Apr 27;15(4):6900-6908.

  10. Yang Z, Yang K, Wei X, Liu W, Gao R, Jäkle F, Loo YL, Ren Y*. A Multiple Excited-State Engineering of Boron-Functionalized Diazapentacene Via a Tuning of the Molecular Orbital Coupling. J PhysChem Lett. 2021 Sep 30;12(38):9308-9314.

  11. Wei, Z.; Andong, X.; Jie, K.; Wenqi, X.; Xinmiao, N.; Di, S*.; Weimin, L*.; Andong, X*. Probing the Effect of Solvation on PhotoexcitedQuadrupolar Donor-Acceptor-Donor Molecule via Ultrafast Raman Spectroscopy. Chinese Journal of Chemical Physics 2021

2020                                                    

  1. An, Q.;  Wang, Z.;  Chen, Y.;  Wang, X.;  Zhang, K.;  Pan, H.;  Liu, W*.; Zuo, Z*., Cerium-Catalyzed C–H Functionalizations of Alkanes Utilizing Alcohols as Hydrogen Atom Transfer Agents. Journal of the American Chemical Society 2020,142 (13), 6216-6226.                                                            

  2. Fu, L.;  Wang, Z.;  Liu, Y.;  Wang, X.;  Xu, R.;  Liu, W*.;  Chen, J*.; Xu, J., Observation of triplet nπ* state in ultrafast intersystem crossing of 6-azathymine. Journal of Photochemistry and Photobiology A: Chemistry 2020,396, 112491.

  3. Shi, L.; Yan, C.; Guo, Z*.; Chi, W.; Wei, J.; Liu, W.; Liu, X*.; Tian, H.; Zhu, W.-H*., De novo strategy with engineering anti-Kasha/Kasha fluorophores enables reliable ratiometric quantification of biomolecules. Nature Communications 2020,11 (1), 1-11.

  4. 王子钰;  魏景乐;  徐文琪;  姜甲明;  黄逸凡*; 刘伟民*, 利用飞秒受激拉曼光谱技术研究 Pyranine 分子激发态质子传递过程. 物理学报  2020,69 (19), 198201-1-198201-8.

2019                                                    

  1. Shang, Y.; Liao, Y.; Wei, Q.; Wang, Z.; Xiang, B.; Ke, Y.; Liu, W*.; Ning, Z*., Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure. Science advances 2019, 5 (8), eaaw8072. (co-corresponding author)

  2. Zhang, W.; Guo, J.; Suo, P.; Lv, L.; Liu, J.; Lin, X.; Jin, Z.; Liu, W*.; Ma, G*., Optically controlled ultrafast terahertz switching in a CdTe nanostructure thin film. Applied optics 2019, 58 (30), 8200-8206. (co-corresponding author)

  3. Yang, Z.; Wang, X.; Chen, Y.; Zheng, Z.; Chen, Z.; Xu, W.; Liu, W.; Yang, Y. M.; Zhao, J.; Chen, T*., Ultrafast self-trapping of photoexcited carriers sets the upper limit on antimony trisulfide photovoltaic devices. Nature communications 2019,10 (1), 1-8.

2018及以前                                                 

  1. Liu, W.; Tang, L.; Oscar, B. G.; Wang, Y.; Chen, C.; Fang, C*., Tracking ultrafast vibrational cooling during excited-state proton transfer reaction with anti-Stokes and Stokes femtosecond stimulated Raman spectroscopy. The journal of physical chemistry letters 2017,8 (5), 997-1003.

  2. Liu, W.; Wang, Y.; Tang, L.; Oscar, B. G.; Zhu, L.; Fang, C*., Panoramic portrait of primary molecular events preceding excited state proton transfer in water. Chemical science 2016,7 (8), 5484-5494.

  3. Oscar, B. G.; Liu, W.; Zhao, Y.; Tang, L.; Wang, Y.; Campbell, R. E.; Fang, C*., Excited-state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging. Proceedings of the National Academy of Sciences 2014, 111 (28), 10191-10196. 

  4.  Wang, W.; Liu, W.; Chang, I.-Y.; Wills, L. A.; Zakharov, L. N.; Boettcher, S. W.; Cheong, P. H.-Y*.; Fang, C*.; Keszler, D. A*., Electrolytic synthesis of aqueous aluminum nanoclusters and in situ characterization by femtosecond Raman spectroscopy and computations. Proceedings of the National Academy of Sciences 2013, 110 (46), 18397-18401.  

                                                                     




在研项目


  1. 国家自然科学基金面上项目:《利用新型的飞秒受激拉曼光谱研究荧光蛋白的超快结构动力学》——已结题。                            

  2. 上海科技大学-上海光机所超强超短激光应用联合实验室平台建设项目:《面向先进材料的超快光谱实验平台》                            

  3. 上海市自然科学基金资助项目:《利用飞秒受激拉曼光谱研究可逆光学开-关荧光蛋白的激发态结构动力学》                            

                             


本组成员



                                               

                                                                

王子钰

博士后                               

邮箱:wangzy18shanghaitech.edu.cn

 方向:

                 

                                            

蒲瑞华

博士后                            

 邮箱:purh@shanghaitech.edu.cn

 方向:
   胆红素的超快光致构象变化过程,新生儿黄疸病机理及其应用性探索
         

                               

谢俊涵

22级博士研究生

邮箱:xiejh@shanghaitech.edu.cn

  方向:                     
     分子内激发态双质子传递以及异构化过程的研究
                 

                                                 

魏小凡

 22级博士研究生  

邮箱:weixf@shanghaitech.edu.cn

  方向:                   BN分子产生反卡莎荧光的原理                  


                                

马腾飞

 22级博士研究生

 邮箱:matf@shanghaitech.edu.cn

   方向:                     
      光合作用中光保护机制的能量动力学
                 

                                                  

彭勃

  23级博士研究生  

 邮箱:penbo@shanghaitech.edu.cn

               


                                

陈瑜

22级硕士研究生

 邮箱:chenyu2022@shanghaitech.edu.cn

                    

                                                  

吴凯文

   23级硕士研究生  

 邮箱:wukw2023@shanghaitech.edu.cn

               


                                

李浩正

 23级硕士研究生

 邮箱:lihzh2023@shanghaitech.edu.cn

      

                                                  

尹伟驿

   24级硕士研究生 

 邮箱:yinwy2024@shanghaitech.edu.cn






           



                                             

康乐

 24级硕士研究生 

 

邮箱:kangle2024@shanghaitech.edu.cn





  


                                  

 

  毕业生

   


                            

林依澜

  24届硕士毕业生

 邮箱:linyl@shanghaitech.edu.cn                    


                            

王正心

  22届硕士毕业生

                     

                            

吴越峡

  22届硕士毕业生

                     

                           

赵智渊

 22届本科毕业生

                                   

                                                  

高瀚文

 15届毕业生  

    

                                

郭晓风

 15届毕业生

   

                                                 

郑俊杰

16届毕业生                 

   




返回原图
/