张石磊 课题组介绍
|
我的研究兴趣起源于光子与磁性的相互作用过程。从X射线的视角探索凝聚态中的电子结构和磁结构;包括材料中的磁性起源(原子尺度),磁相互作用(微观尺度),磁有序(介观尺度),磁动力学(超快时间尺度),以及磁性与电荷,晶格的相互作用。
磁性散射与磁性光谱学(MSSL)课题组利用多种频段的电磁波(射频-微波-紫外-软X射线-硬X射线)来探测量子材料中的磁性。得益于同步辐射X光高通量,能量连续可变,可控偏振以及超快的特点,近年来我们不断开发出新的利用X光研究材料磁性的手段,并持续探索新的光子-磁性相互作用机制。目前我们研究量子材料的主要实验手段包括:X射线磁性散射(软X射线共振散射,硬X射线非共振散射和磁性表面散射)以及磁性光谱学(XMCD/XMLD)。我们与世界各光源的磁性线站保持密切的合作,目前研究的材料体系包括:拓扑磁性材料,非共线磁性材料,磁阻挫体系,铁电材料,手性磁体,二维磁性材料,以及量子材料中拓扑电子结构的自旋态。
About Myself
Over the years, I have spoiled myself by frequently escaping from the labs and purely thinking about different ways how light can interact with matters. This bad habit makes me both (in fact most of the time, neither) an experimentalist and a theorist. I am then addicted to x-rays, especially the physical process of the interaction between electromagnetic waves and magnetic materials. This has been the driven force of my research interests and activities.
I am currently an active researcher that makes use of synchrotron radiation to study magnetism. My favorite Hamiltonian:
essentially describes all interesting things that can happen during the photon-electron interaction, from which rich physics will be expected. Although it directly deals with electronic orbitals, one may notice that the spin degree of freedom has great opportunities to play a role via different manners. This leads to spin-dependent photon absorption, photoemission and scattering, which are the key aspects I would consider in order to study magnetism in quantum materials.
About Magnetic Scattering and Spectroscopy Lab (MSSL)
Our group uses electromagnetic waves to probe the magnetic properties at various levels of energy-scale, length-scale and time-scale. The key experimental techniques we use are resonant elastic x-ray scattering (REXS) in soft x-ray region, non-resonant magnetic x-ray scattering in hard x-ray region, magnetic x-ray reflectivity and surface magnetic diffraction, as well as x-ray magnetic circular/linear dichroism (XMCD/XMLD). Another important task is to develop new x-ray-based magnetic characterisation techniques.
In close collaborations with various magnetism beamlines around the world, we are dedicated to characterise magnetic and electronic structures of novel quantum materials. From the origin of magnetism at atomic level, microscopic interactions, magnetic order, to spin dynamics and phase transitions, we aim to fully reveal the underlying physics of the target magnetic materials.
Book: Shilei Zhang, Chiral and Topological Nature of Magnetic Skyrmions, Springer, ISBN 978-3-319-98252-6 (2018).
19. S. L. Zhang, G. van der Laan, J. Müller, L. Heinen, M. Garst, A. Bauer, H. Berger, C. Pfleiderer, & T. Hesjedal, Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet, Proc. Natl. Acad. Sci. 115, 6386 (2018).
18. S. L. Zhang, G. van der Laan, W. W. Wang, A. A. Haghighirad & T. Hesjedal, Direct Observation of Twisted Surface Skyrmions in Bulk Crystals, Phys. Rev. Lett. 120, 227202 (2018).
17. S. L. Zhang, W. W. Wang, D. M. Burn, H. Peng, H. Berger, A. Bauer, C. Pfleiderer, G. van der Laan, & T. Hesjedal, Manipulation of Skyrmion Motion by Magnetic Field Gradients, Nat. Commun. 9, 2115 (2018).
16. S. L. Zhang, F. Kronast, G. van der Laan, & T. Hesjedal, Real-Space Observation of Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure, Nano Lett. 18, 1057 (2018).
15. S. L. Zhang, G. van der Laan, & T. Hesjedal. Direct experimental determination of spiral spin structures via the dichroism extinction effect in resonant elastic soft x-ray scattering. Phys. Rev. B 96, 094401 (2017).
14. S. L. Zhang, G. van der Laan, & T. Hesjedal. Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3. Nat. Commun. 8, 14619 (2017).
13. S. L. Zhang, I. Stasinopoulos, T. Lancaster, F. Xiao, A. Bauer, F. Rucker, A. A. Baker, A. I. Figueroa, Z. Salman, F. L. Pratt, S. J. Blundell, T. Prokscha, A. Suter, J. Waizner, M. Garst, D. Grundler, G. van der Laan, C. Pfleiderer & T. Hesjedal. Room-temperature helimagnetism in FeGe thin films. Sci. Rep. 7, 123 (2017).
12. S. L. Zhang, A. Bauer, H. Berger, C. Pfleiderer, G. van der Laan, & T. Hesjedal. Imaging and manipulation of skyrmion lattice domains in Cu2OSeO3. Appl. Phys. Lett. 109, 192406 (2016).
11. S. L. Zhang, A. Bauer, H. Berger, C. Pfleiderer, G. van der Laan, & T. Hesjedal. Resonant elastic x-ray scattering from the skyrmion lattice in Cu2OSeO3. Phys. Rev. B 93, 214420 (2016).
10. S. L. Zhang, A. Bauer, D. M. Burn, P. Milde, E. Neuber, L. M. Eng, H. Berger, C. Pfleiderer, G. van der Laan, & T. Hesjedal. Multidomain Skyrmion Lattice State in Cu2OSeO3. Nano Lett. 16, 3285 (2016).
9. S. L. Zhang & T. Hesjedal. The magneto-Hall difference and the planar extraordinary Hall balance. AIP Adv. 6, 045019 (2016).
8. S. L. Zhang, R. Chalasani, A. A. Baker, N. J. Steinke, A. I. Figueroa, A. Kohn, G. van der Laan, & T. Hesjedal. Engineering helimagnetism in MnSi thin films. AIP Adv. 6, 015217 (2016).
7. S. L. Zhang, A. A. Baker, S. Komineas, & T. Hesjedal. Topological computation based on direct magnetic logic communication. Sci. Rep. 5, 15773 (2015).
6. S. L. Zhang, A. A. Baker, J. Y. Zhang, G. H. Yu, S. G. Wang, & T. Hesjedal. Universal Magnetic Hall Circuit Based on Paired Spin Heterostructures. Adv. Electron. Mater. 1,1400054 (2015).
5. S. L. Zhang, J. Y. Zhang, A. A. Baker, S. G. Wang, G. H. Yu & T. Hesjedal. Three dimensional magnetic abacus memory. Sci. Rep. 4, 6109 (2014).
4. S. L. Zhang, L. J. Collins-McIntyre, J. Y. Zhang, S. G. Wang, G. H. Yu & T. Hesjedal Nonvolatile full adder based on a single multivalued Hall junction. SPIN 3, 1350008 (2013).
3. S. L. Zhang, Y. Liu, L. J. Collins-McIntyre, T. Hesjedal, J. Y. Zhang, S. G. Wang & G. H. Yu. Extraordinary Hall balance. Sci. Rep. 3, 2087 (2013).
2. S. L. Zhang, J. Teng, J. Y. Zhang, Y. Liu, J. W. Li, G. H. Yu & S. G. Wang. Large enhancement of the anomalous Hall effect in Co/Pt multilayers sandwiched by MgO layers. Appl. Phys. Lett. 97, 222504 (2010).
1. S. L. Zhang, J. Teng & G. H. Yu. A method for fabricating materials with ultrahigh anomalous Hall effect sensitivity. Chinese National Patent No. 201010500518.3 (2010).
Collaborative Works:
R. Brearton, M. W. Olszewski, S. L. Zhang, M. R. Eskildsen, C. Reichardt, C. J. O. Reichardt, G. van der Laan, & T. Hesjedal. Skyrmions in anisotropic magnetic fields: strain and defect driven dynamics. MRS Adv. (2019).
A. Frisk, L. B. Duffy, S. L. Zhang, G. van der Laan & T. Hesjedal. Magnetic X-ray spectroscopy of two-dimensional CrI3 layers. Mater. Lett. 232, 5 (2018).
B. Wiedemann, S. L. Zhang, Y. Khaydukov, T. Hesjedal, O. Soltwedel, T. Keller, S. Mühlbauer, A. Chacon, T. Adams, M. Halder, C. Pfleiderer, & P. Böni, Reciprocal Space Imaging of the Magnetic Order in Epitaxial MnSi Thin Films. arXiv 1710.00544 (2017).
A. I. Figueroa, S. L. Zhang, A. A .Baker, R. Chalasani, A. Kohn, S. C. Speller, D. Gianolio, C. Pfleiderer, G. van der Laan & T. Hesjedal. Strain in epitaxial MnSi films on Si(111) in the thick film limit studied by polarization-dependent extended x-ray absorption fine structure. Phys. Rev. B 94, 174107 (2016).
A. A. Baker, M. Beg, G. Ashton, M. Albert, D. Chernyshenko, W. W. Wang, S. L. Zhang, M-A Bisotti, M Franchin, CL Hu, R Stamps, T Hesjedal & H Fangohr. Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations. J. Magn. Magn. Mater. 412, 428 (2017).
T. Lancaster, F. Xiao, Z. Salman, I. O. Thomas, S. J. Blundell, F. L. Pratt, S. J. Clark, T. Prokscha, A. Suter, S. L. Zhang, A. A. Baker, & T. Hesjedal. Transverse field muon-spin rotation measurement of the topological anomaly in a thin film of MnSi. Phys. Rev. B 93, 140412 (2016).
S. E. Harrison, L. J. Collins-McIntyre, S. L. Zhang, A. A. Baker, A. I. Figueroa, A. J. Kellock, A. Pushp, Y. L. Chen, S. S. P. Parkin, J. S. Harris, G. van der Laan & T. Hesjedal. Study of Ho-doped Bi2Te3 topological insulator thin films. Appl. Phys. Lett. 107, 182406 (2015).
S. E. Harrison, L. J. Collins-Mcintyre, S. L. Zhang, A. A. Baker, A. I. Figueroa, A. J. Kellock, A. Pushp, S. S. P. Parkin, J. S. Harris, G. van der Laan, & T. Hesjedal. Study of Dy-doped Bi2Te3: thin film growth and magnetic properties. J. Phys. Cond. Matter 27, 245602 (2015).
P. Schoenherr, S. L. Zhang, Y. Liu, P. Kusch, S. Reich, T. Giles, D. Daisenberger, D. Prabhakaran, Y. Chen & T. Hesjedal. A new topological insulator built from quasi one-dimensional atomic ribbons. Phys. Status Solidi RRL 9, 130 (2015).
P. Schoenherr, L. J. Collins-McIntyre, S. L. Zhang, P. Kusch, S. Reich, T. Giles, D. Daisen- berger, D. Prabhakaran & T. Hesjedal. Vapour-liquid-solid growth of ternary Bi2Se2Te nanowires. Nanoscale Res. Lett. 9, 127 (2014).
A. I. Figueroa, G. van der Laan, L. J. Collins-McIntyre, S. L. Zhang, A. A. Baker, S. E. Harrison, P. Schoenherr, G. Cibin & T. Hesjedal. Magnetic Cr doping of Bi2Se3: Evidence for divalent Cr from x-ray spectroscopy. Phys. Rev. B 90, 134402 (2014).
J. Y. Zhang, G. Yang, S. G. Wang, Y. W. Liu, Z. D. Zhao, Z. L. Wu, S. L. Zhang, X. Chen, C. Feng & G. H. Yu. Effect of MgO/Co interface and Co/MgO interface on the spin dependent transport in perpendicular Co/Pt multilayers. J. Appl. Phys. 116, 163905 (2014).
L. J. Collins-McIntyre, M. D. Watson, A. A. Baker, S. L. Zhang, A. I. Coldea, S. E. Harrison, A. Pushp, A. J. Kellock, S. S. P. Parkin, G. van der Laan & T. Hesjedal. X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi2Se3 thin films. AIP Adv. 4, 127136 (2014).
J. Y. Zhang, G. Yang, S. G. Wang, S. L. Zhang, P. Zhang, X. Z. Cao, S. L. Jiang, C. J. Zhao, Y. Liu, H. C. Wang, & G. H. Yu. Ultrahigh Anomalous Hall Sensitivity in Co/Pt Multilayers by Interfacial Modification. Appl. Phys. Express 6, 103007 (2013).
J. Y. Zhang, Z. L. Wu, S. G. Wang, C. J. Zhao, G. Yang, S. L. Zhang, Y. Liu, S. Liu, J. Teng & G. H. Yu. Effect of interfacial structures on anomalous Hall behavior in perpendicular Co/Pt multilayers. Appl. Phys. Lett. 102, 102404 (2013).