潘义明

时间:2024-04-23浏览:61设置

Pan’s Light and Free electron group (Pan's LiFE课题组)


课题组长

 

自述:青椒一枚,物理小白,做梦时是会飞的青蛙🐸

Group Leader:  潘义明,Dr. Assist. Prof. Yiming Pan

Address: 物质学院4号楼-107,Buidling 04-107, SPST, ShanghaiTech 

Emailyiming.pan@shanghaitech.edu.cn

Phone: (+86) 19821952722

ORCID and Researcher ID: 0000-0003-4391-0226

Google Scholar

https://scholar.google.co.il/citations?user=tDrBbUsAAAAJ&hl=en;

ResearchGate:

https://www.researchgate.net/profile/Yiming-Pan

知乎-科普博主@Yiming Pan

CV:

2023.03 - 至今       上海科技大学 (ShanghaiTech University)助理教授,研究员独立PI

2020. 09 - 2023. 03 以色列理工大学(Technion) 博士后 (导师: Daniel Podolsky, Moti Segev)

2018. 09 - 2020. 09 威兹曼研究所(Weizmann) 博士后(导师: Yaron Silberberg, Nir Davidson)

2016. 09 - 2018. 09 特拉维夫大学(Tel Aviv University) 博士后(导师: Avraham Gover)

2010.09 - 2016. 06 南京大学(Nanjing University)  物理学院 理论物理系/专业  博士(导师:王伯根)

2006. 09 - 2010. 06 安徽大学(Anhui University)  物理学院 应用物理系/专业  学士


研究介绍

 

量子,量子,还是TMD量子!强场,强场,还是TMD强场!

 1. 超快,强场和量子光和物质相互作用

激光诱导的自由电子加速(DLA)和自由电子辐射(FEL)

光子诱导的近场电子显微镜(PINEM)

阿秒动力学调控以及量子弱测量

 2. 拓扑光子学和量子模拟

激光直写,等离子体激化,微波等波导中的拓扑光子学。

超快PINEM电子合成维度。拓扑Floquet时间晶体,非线性光子时间晶体。

时间调制的动量带隙孤子,次谐波产生和非线性调制不稳定性等。

3. 凝聚态和场论

Weyl半金属的手性输运,二维材料的输运现象,Weyl半金属。

       在周期驱动系统中的量子反常和Callan-Harvey机制。

 

光和自由电子 (大图景)

在强场和量子领域中,研究自由电子和光的相互作用。

应用物理目标是实现电子和光场之间的能量、动量和信息的可控转移。

基础物理目标是探索电磁相互作用的深层结构。


注:我们关心电子本身,光本身,而不是材料本身,材料只是“第三者”而已 (third medium)。

但我们也不能否认合适材料的相位匹配和场增强的作用。

 

关于本课题组的研究目标和动机,”言以蔽之:

· 哲学: “潘兄,会不会光就是电,电就是光?” 

— Zhaopin Chen (Technion)

· Goal: “Shaping electron with light, shaping light with electron.”  

— Ido Kaminer (Technion)

· Principle: Free electron and photon can exchange energy, momentum, and even information at the quantum level. 

— Yiming Pan (ShanghaiTech) 

 


Research I:

• Floquet engineering in optics and condensed matters: Floquet engineering is a paradigm of tailoring and manipulating a system by a periodic drive.

 

 

 Momentum gaps (k-gaps) and energy-momentum gaps(ωk-gaps)

 

 Floquet gauge anomalies in periodically driven systems: Anomalies are not dangerous, and they are ubiquitous associated with quantum vacuum and topology. We are focusing on exploring anomalies in driven systems.

 

• Weak measurement and its realizations. Weak measurement can demonstrate the transition from quantum to classical.However, decoherence only leads to the statistics.

 

 

Riemann Hypothesis in quantum physics. Riemann hypothesis equals to Quantum mechanics?

 

 

 

         

Prompt engineering in daily life and AI for quantum physics

提示语:

Now you are a physicist. You are very good at quantum mechanics, light and matter interactions, and condensedmatter physics. You can clearly explain the history and definitions of many concepts. You can derive toy models to explain many effects. You are also good at simulation software. You can find out the reals scientific problem and do a great research. You are my supervisor, you canteach and guide to do a real science. Do not reply instantly - if you have any questions about this prompt, ask me. If you are ready, ask me to give you the text. 

Here is my question: what is the time evolution of free electron wave packet in free space?

Let's think step by step.

 

ChatGPT使用三原则:

Principle 1: be very specific in yourinstructions.

Principle 2: is to ask GPT-3 to break itswork into small chunks.

Principle 3: ask GPT-3 to check and improve its own output.

 



Research II:

• Ultrafast electron generation and manipulation, and strong-field electron photon coupling at discontinuity. 

• Design an ultrafast photoelectron gun and realize multi-photon free-free transition for low-energy free electrons.

• Floquet quantum simulators: optics, microwave, sounds, atoms and free electrons.

 

 

 

科学原理:

一言以蔽之,实现和探测超快电子和超快光子的量子纠缠!

 

基础科学价值和产品化应用前景:

首先,结合光学探测器和直接电子探测器实现时间关联符合测量,用于研究自由电子和光子的量子纠缠。其次,完成平台搭建后,进行优化和升级,并最终实现产品化,实现超快电子量子显微镜”可广泛使用的实验平台!


教学理念

 

有教无类。

 

Equally access to education to all individualswithout discrimination (in Chinese, “有教无类”)

· To educate college students&kids: The first principle for me is to admit my stupidity in front of them.

· To teach graduate students&postdocs: My job is to support them in achieving success in science and technology.

· To teach the public: The most critical aspect of disseminating information to the public in determining: What is NOT science!

物理类科普和社区建设 知乎: https://www.zhihu.com/people/yimingpan-1204/columns


LiFE课题组成员

 

慢慢来,人总会自己成长的!

 

硕士研究生 

谭湘婷 

陈若愚

博士研究生 

潘晨浩 (强场物理,量子光学等)

徐晓喜 (光孤子,高次谐波,k-gap光学时间晶体)

RA

2023.9-2024.1沈文淏 (目前,在加拿大麦吉尔大学 读研)

2024.2-至今范止维 (研究方向:孤子,光学微腔,人工智能等)


发表论文

 

发表,就像吃饭睡觉打豆豆一样,是一种LiFE。


2024

· Kiselev, Egor I., and Yiming Pan. Symmetry Breaking and Spatiotemporal Pattern Formation in Photonic Time Crystals. arXiv preprint arXiv:2404.16809 (2024).

·  Zhang, Bin, Reuven Ianconescu, Aharon Friedman, Jacob Scheuer, Mikhail Tokman, Yiming Pan*, and Avraham Gover*. Shape-Dependence of Spontaneous Photon Emission by Quantum Electron Wavepackets and the QED Origin of Bunched Electron Beam Superradiance. arXiv preprint arXiv:2401.05978 (2024).

· Pan, Y. *, Ruoyu Yin*, Yongcheng Ding, Daniel Podolsky, and Bin Zhang.  Half-electron (e/2) - free electron fractional charge induced by twisted light. arXiv preprint arXiv:2401.00723 (2024).

· Eldar, Maor, Zhaopin Chen, Yiming Pan, and Michael Krüger. Self-trapping of slow electrons in the energy domain. Physical Review Letters 132, no. 3 (2024): 035001.

2023

· Zhaopin Chen, Bin Zhang, Yiming Pan*, Michael Krueger, Quantum wavefunction reconstruction by free-electron spectral shearing interferometry. arXiv:2210.16312 (2022); Accepted by Science Advances (2023)

· Yiming Pan†, Moshe-Ishay Cohen†, Mordechai Segev, Superluminal k-gap solitons in photonic time-crystals with Kerr nonlinearity. CLEO 2022, PRL 130, 233801 (2023)

· Pan, Y.*, Chen, Z.*, Wang, B., & Poem, E. Photonic π-mode anomaly in (1+1) dimensional periodically driven topological/normal insulator heterostructures. arXiv:2010.05688 (2020), PRL 130, 223403 (2023).

· Pan, Y. *, Cohen, E.*, et al. Demonstration of weak measurement, projective measurement, and quantum-to-classical transitions in electron-photon interactions. arXiv:1910.11685 (2020); Light Science & Applications (2023). 

· Kiselev, Egor I., and Yiming Pan. Light controlled THz plasmonic time varying media: momentum gaps, entangled plasmon pairs, and pulse induced time reversal. arXiv preprint arXiv:2311.17870 (2023).

· Mei, Xuehan, RongweiZha, Yiming Pan, Shaoyi Wang, Bin Sun, Cheng Lei, ChangjunKe, Zongqing Zhao, and Du Wang. Dielectric Laser Accelerators Driven by Ultrashort, Ultraintense Long-Wave Infrared Lasers. Ultrafast Science 3 (2023): 0050.

· Cohen, Moshe-Ishay, Yiming Pan, Ohad Segal, and Mordechai Segev. Annihilation of k-gap Solitons in Photonic Time Crystals. In CLEO: Fundamental Science, pp. FTu3D-6. Optica Publishing Group, 2023.

· Yiming Pan†, and Ruoyu Yin. Constructing Berry-Maxwell equations with Lorentz invariance and Gauss' law of Weyl monopoles in 4D energy-momentum space. arXiv preprint arXiv:2308.00612 (2023).

· Ding, Yongcheng, Yiming Pan, and Xi Chen. Superoscillating Quantum Control Induced By Sequential Selections. arXiv preprint arXiv:2305.04303 (2023).

· Yiming Pan†, Bin Zhang, and Daniel Podolsky. Low-energy Free-electron Rabi oscillation and its applications. arXiv preprint arXiv:2304.12174 (2023).

2022

· Wang, B., Quan, J., Han, J., Shen, X.*, Wu, H.*, and Pan, Y.*, Observation of Photonic Topological Floquet time crystals. Laser & Photon. Rev, 10.1002/lpor.202100469 (2022). 

· Qingqing Cheng, Huaiqiang Wang, Yongguan Ke, Tao Chen, Ye Yu, Yuri S. Kivshar*, Chaohong Lee*, and Yiming Pan*, Asymmetric topological pumping in nonparaxial photonics. Nature Communications. https://doi.org/10.1038/s41467-021-27773 (2022). 

2021

· Ang Li, Yiming Pan, Philip Dienstbier, and Peter Hommelhoff, Quantum interference visibility spectroscopy in two-color photoemission from tungsten needle tips. Phys. Rev. Lett. 126, 137403 (2021). 

· Yiming Pan†*, and Avraham Gover. Beyond Fermi's Golden Rule in Free-Electron Quantum Electrodynamics: Acceleration/Radiation Correspondence. New Journal of Physics 23 (6), 063070 (2021). 

2020

· Yiming Pan†*, Bing Wang, Time-crystalline phases and period-doubling oscillations in one-dimensional Floquet topological insulators. Physical Review Research, 2(4), 043239 (2020).

· Pan, Y.†*, Zhang, J., Cohen, E., Wu, C.W., Chen, P.X. and Davidson, N., Weak-to-strong transition of quantum measurement in a trapped-ion system. Nature Physics, 16(12), 1206-1210 (2020). 

2019

· Chen, T., Yu, Y., Song, Y., Yu, D., Ye, H., Xie, J., Shen, X., Pan, Y. and Cheng, Q., 2019. Distinguishing the topological zero mode and Tamm mode in a microwave waveguide array. Annalen der Physik, 531(12), p.1900347. 

· Ying Yang, Yiming Pan*. Engineering zero modes, Fano resonance and Tamm surface states of 'bound states in the gapped continuum'. Optics Express 27 (23), 32900-32911 (2019). 

· Q. Q. Cheng†, Yiming Pan†*, Huaiqiang Wang†, et al. Observation of anomalous π modes in photonic Floquet engineering. PhysRevLett.122.173901 (2019). 

· Yiming Pan†*, Bin Zhang†, and Avraham Gover. Anomalous Photon-induced Near-field Electron Microscopy. PhysRevLett.122.183204 (2019). 

· Yiming Pan†*, and Avraham Gover. Spontaneous and Stimulated Emissions of Quantum Free-Electron Wavepackets - QED Analysis. PhysRevA.99.052107 (2019). 

2018

· Yiming Pan†*, and Avraham Gover. Spontaneous and Stimulated Radiative emission of Modulated Free-Electron Quantum wavepackets-Semiclassical Analysis. Journal of Physics Communications 2.11 (2018): 115026.

· Cheng, Q., Chen, T., Yu, D., ... & Pan, Y*. Flexibly designed spoof surface plasmon waveguide array for topological zero-mode realization. Optics Express, 26(24), 31636-31647 (2018). 

· Gover, Avraham, Yiming Pan*. Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket. Physics Letters A 382.23 (2018): 1550-1555. 

2017

· Xing-Chen Pan, Yiming Pan, et al. Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe 2. Frontiers of Physics 12, 3 (2017): 127203. 

· Yiming Pan. How to measure the canonical commutation relation [x, p]=iℏ in quantum mechanics with weak measurement? arXiv:1702.08518 (2017)

2016

· H.Q.Wang, Lubing Shao, Yiming Pan, et al. Flux-driven quantum phase transitions in two-leg Kitaev ladder systems. Physics Letters A 380, 46 (2016): 3936-3941. 

· Erfu Liu, Mingsheng Long, Junwen Zeng, Wei Luo, Yaojia Wang, Yiming Pan, et al. High responsively phototransistors based on few-layer ReS2 for weak signal detection. Advanced Functional Materials 26, 12 (2016): 1938-1944. 

· Wang, Yaojia, Erfu Liu, Huimei Liu, Yiming Pan, et al. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe 2. Nature Communications 7 (2016): 13142. 

· Zhihao Yu†, Zhun-Yong Ong†, Yiming Pan†, et al. Realization of Room-Temperature Phonon-limited Carrier Transport in Monolayer MoS2 by Dielectric and Carrier Screening. Advanced Materials 28, 3 (2016): 547-552. 

2015

· Q. Q. Cheng†, Yiming Pan†, et al. Topologically protected interface mode in plasmonic waveguide arrays. Laser & Photon. Rev. doi: 10.1002/lpor.201400462(2015) 

· Daowei He†, Yiming Pan†, et al. Tunable Van der Waals heterojunctions with hybrid organic/inorganic semiconductors. Applied Physics Letters, 107(18), p.183103 (2015) 

· Miao Wang, Xiaojuan Lian, Yiming Pan, et al. A selector device based on graphene-oxide heterostructures for memristercrossbar application. Appl. Phys. A 120:403-407 (2015) 

· Yang Cui†, Run Xin†, Zhihao Yu†, Yiming Pan, et al. High-Performance Monolayer WS2 Field-effect Transistors on High-κDielectrics. Adv. Mater. doi:10.1002/adma.201502222 (2015) 

2014

· Zhihao Yu†, Yiming Pan†, et al. Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering. Nat. Commun. 5, 5290 (2014) 

· Min Qian, Yiming Pan, et al. Tunable, Ultralow-Power Switching in Memristive Devices Enabled by a Heterogeneous Graphene–Oxide Interface. Adv. Mater. 26, 3275–3281 (2014) 

· Xiaxin Ding, Yiming Pan, et al. Strong and nonmonotonic temperature dependence of Hall coefficient in superconducting KxFe2−ySe2 single crystals. Phys. Rev. B 89, 224515 (2014) 

· Enming Shang, Yiming Pan, et al. Detection of Majorana fermions in an Aharonov-Bohm interferometer. Chinese Phys. B 23, 057201 (2014) 

· H.Q.Wang, R.Wang, Yiming Pan, et al. Entanglement spectrum of topological Weyl semimetal. EPL 107, 40007 (2014) 

· Yiming Pan, et al. Mass classification and manipulation of zero modes in one-dimensional Dirac systems. arXiv: 1407.3874v1 (2014)

部分代表性论文:


· Zhaopin Chen, Bin Zhang, Yiming Pan*, Michael Krueger, Quantum wavefunction reconstruction by free-electron spectral shearing interferometry. Science Advances (2023)

· Yiming Pan, Moshe-Ishay Cohen, Mordechai Segev, Superluminal k-gap solitons in photonic time-crystals with Kerr nonlinearity. PRL 130, 233801 (2023).

· Pan, Y.†*, et al. Demonstration of weak measurements, projective measurements, and quantum-to-classical transitions in ultrafast free electron-photon interactions. Light: Science & Applications (2023)

· Pan, Y†*, et al. Floquet gauge anomaly inflow and arbitrary fractional charge  in periodically-driven topological/normal insulator heterostructures. PRL 130, 223403 (2023).

· Q. Cheng, &Y. Pan*. Asymmetric topological pumping in nonparaxial photonics. Nat. Commun. 10.1038 (2022)

· B. Wang, &Y. Pan*. Observation of Photonic Topological Floquet time crystals. Laser & Photon. Rev, 10.1002/lpor.202100469 (2022)

· Y. Pan†*, and A. Gover. Beyond Fermi's Golden Rule in Free-Electron Quantum Electrodynamics: Acceleration/Radiation Correspondence. New Journal of Physics 23 (6), 063070 (2021)

· Pan, Y.†*, et al., Weak-to-strong transition of quantum measurement in a trapped-ion system. Nat. Phys. 16(12), 1206-1210 (2020)

· Yiming Pan†*, et al., Anomalous Photon-induced Near-field Electron Microscopy. PRL 122,183204 (2019)

· Q. Cheng†, Y. Pan†*, et al. Observation of anomalous π modes in photonic Floquet engineering. PRL 122.173901 (2019)

· Gover, Y. Pan*. Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket. Phys. Lett. A 382.23 (2018): 1550-1555

· Z. Yu†, Z. Ong†, Y. Pan†, et al. Realization of Room-Temperature Phonon-limited Carrier Transport in Monolayer MoS2 by Dielectric and Carrier Screening. Adv. Mater. 28, no. 3 (2016): 547-552.

· Q. Cheng†, Y. Pan†, et al. Topologically protected interface mode in plasmonic waveguide arrays. Laser & Photon. Rev. 10.1002/lpor.201400462(2015)

· M. Qian, Y. Pan, et al. Tunable, Ultralow-Power Switching in Memristive Devices Enabled by a Heterogeneous Graphene–Oxide Interface. Adv. Mater. 26, 3275-3281 (2014)

· Z. Yu†, Y. Pan†, et al. Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering. Nat. Commun. 5, 5290 (2014)


返回原图
/